The frictional force is oposing the force that we apply to this mass. Therefore the overall force is

The second principle of physics tells us that the acceleration of a mass is direct proportional to the applied force, the mass of that object being the proportionality constant.

Hence
Answer:
a) 8.99*10³ V b) 4.5*10⁻² J c) 0 d) 0
Explanation:
a)
- The electrostatic potential V, is the work done per unit charge, by the electrostatic force, producing a displacement d from infinity (assumed to be the reference zero level).
- For a point charge, it can be expressed as follows:

- As the electrostatic force is linear with the charge (it is raised to first power), we can apply superposition principle.
- This means that the total potential at a given point, is just the sum of the individual potentials due to the different charges, as if the others were not there.
- In our case, due to symmetry, the potential, at any corner of the triangle, is just the double of the potential due to the charge located at any other corner, as follows:

- The potential at point C is 8.99*10³ V
b)
- The work required to bring a positive charge of 5μC from infinity to the point C, is just the product of the potential at this point times the charge, as follows:

- The work needed is 0.045 J.
c)
- If we replace one of the charges creating the potential at the point C, by one of the same magnitude, but opposite sign, we will have the following equation:

- This means that the potential due to both charges is 0, at point C.
d)
- If the potential at point C is 0, assuming that at infinity V=0 also, we conclude that there is no work required to bring the charge of 5μC from infinity to the point C, as no potential difference exists between both points.
<span>1.8 meters
Since the ball loses 23.0% of it's energy with each bounce, that means that it retains 100% - 23.0% = 77.0% of it's energy per bounce. And since it bounces 3 times, that means that it will have 0.77^3 = 0.456533 = 45.6533% of it's original energy after the third bounce. So it will reach 45.6533% of it's original height after the third bounce. So 45.6533% * 4.0 = 0.456533 * 4.0 m = 1.8 m</span>
Answer:
The detailed explanations is attached below
Explanation:
What is applied is the De brogile equation and the equation showing a relationship between Energy, speed of light and wavelength.
The explanation is as attached below.
Answer:

Explanation:
<u>Free Fall Motion</u>
A free-falling object refers to an object that is falling under the sole influence of gravity. If the object is dropped from a certain height h, it moves downwards until it reaches ground level.
The speed vf of the object when a time t has passed is given by:

Where 
Similarly, the distance y the object has traveled is calculated as follows:

If we know the height h from which the object was dropped, we can solve the above equation for t:

The stadium is h=32 m high. A pair of glasses is dropped from the top and reaches the ground at a time:

The pen is dropped 2 seconds after the glasses. When the glasses hit the ground, the pen has been falling for:

Therefore, it has traveled down a distance:

Thus, the height of the pen is:
