Answer:
Follows are the solution to this question:
Explanation:
By checking the value in which we have calculated by performing its differentiation of
, the correct form of its integer value is calculating with regard to t, that also provides as expected
.
In a closed system, the loss of momentum of one object is same as________ the gain in momentum of another object
according to law of conservation of momentum, total momentum before and after collision in a closed system in absence of any net external force, remains conserved . that is
total momentum before collision = total momentum after collision
P₁ + P₂ = P'₁ + P'₂
where P₁ and P₂ are momentum before collision for object 1 and object 2 respectively.
P'₁ - P₁ = - (P'₂ - P₂)
so clearly gain in momentum of one object is same as the loss of momentum of other object
The intensity of a light in a surface follows the inverse square law formula which can be mathematically expressed as,
I = k/d²
where I is intensity, d is distance, and k is the proportionality constant. For us to increase the intensity, we should lower the distance from the source to the surface.
Answer:
407 steps
Explanation:
From the question,
P = mgh/t........... Equation 1
Where P = power, m = mass, g = acceleration due to gravity, h = height, t = time.
Make h the subject of the equation
h = Pt/mg............. Equation 2
Given: P = 746 W, t = 1 minute = 60 seconds, m = 70 kg.
Constant: g = 9.8 m/s²
Substitute into equation 2
h = 746(60)/(70×9.8)
h = 44760/686
h = 65.25 m
h = 6525 cm
number of steps = 6525/16
number of steps = 407 steps
To develop this problem it is necessary to apply the concepts related to Sound Intensity.
By definition the intensity is given by the equation

Where,
I = Intensity of Sound
= Intensity of Reference
At this case we have that 15 engines produces 15 times the reference intensity, that is

And the total mutual intensity is 100 dB, so we should




Therefore each one of these engines produce D. 88dB.