U = 0, initial vertical velocity
Neglect air resistance, and g = 9.8 m/s².
The time, t, required for the pen to attain a vertical velocity of 19.62 m/s is given by
19.62 m/s = 0 + (9.8 m/s²)*(t s)
t = 19.62/9.8 = 2.00 s
Answer: 2.0 s
Answer:
Explanation:
When the positively charged half shell is brought in contact with the electroscope, its needle deflects due to charge present on the shell.
When the negatively charged half shell is brought in contact with the positively charged shell , the positive and negative charge present on each shell neutralises each other .So both the shells lose their charges .The positive half shell also loses all its charges
When we separate the half shells , there will be no deflection in the electroscope because both the shell have already lost their charges and they have become neutral bodies . So they will not be able to produce any deflection in the electroscope.
To solve this problem it is necessary to apply the concepts related to the Force from Hooke's law, the force since Newton's second law and the potential elastic energy.
Since the forces are balanced the Spring force is equal to the force of the weight that is


Where,
k = Spring constant
x = Displacement
m = Mass
g = Gravitational Acceleration
Re-arrange to find the spring constant



Just before launch the compression is 40cm, then from Potential Elastic Energy definition



Therefore the energy stored in the spring is 63.72J
Answer:
The water will flow at a speed of 3,884 m/s
Explanation:
Torricelli's equation
v = 
*v = liquid velocity at the exit of the hole
g = gravity acceleration
h = distance from the surface of the liquid to the center of the hole.
v =
= 3,884 m/s