Answer:
xcritical = d− m1
/m2
( L
/2−d)
Explanation: the precursor to this question will had been this
the precursor to the question can be found online.
ff the mass of the block is too large and the block is too close to the left end of the bar (near string B) then the horizontal bar may become unstable (i.e., the bar may no longer remain horizontal). What is the smallest possible value of x such that the bar remains stable (call it xcritical)
. from the principle of moments which states that sum of clockwise moments must be equal to the sum of anticlockwise moments. aslo sum of upward forces is equal to sum of downward forces
smallest possible value of x such that the bar remains stable (call it xcritical)
∑τA = 0 = m2g(d− xcritical)− m1g( −d)
xcritical = d− m1
/m2
( L
/2−d)
The parcel will undergo projectile motion, which means that it will have motion in both the horizontal and vertical direction.
First, we determine how long the parcel will fall using:
s = ut + 1/2 at²
where s will be the height, u is the initial vertical velocity of the parcel (0), t is the time of fall and a is the acceleration due to gravity.
5.5 = (0)(t) + 1/2 (9.81)(t)²
t = 1.06 seconds
Now, we may use this time to determine the horizontal distance covered by the parcel by using:
distance = velocity * time
The horizontal velocity of the parcel will be equal to the horizontal velocity of the cruise liner.
Distance = 10 * 1.06
Distance = 10.6 meters
The boat should be 10.6 meters away horizontally from the point of release.
Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
D. Teach the public energy conservation