I am pretty sure the answer would be too stretch
Answer:
<h2>jeusYgwyhedswusjsj</h2>
Explanation:
sjauajshsu<em>y</em><em>e</em><em>u</em><em>e</em><em>u</em><em>e</em><em>h</em><em>e</em><em>y</em><em>s</em><em>b</em><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em />
E = ½KA^2 is the mechanical energy of any oscillator. It is the sum of elastic potential energy and
kinetic energy. When amplitude A
decreases by 3%, then
(E2-E1)/E1 = {½K(A2^2/A1^2) }/ ½K(A1^2)
= {(A2^2 – A1^2) / (A1^2)}
= 97^2 – 100^2/100^2
= 5.91% of the mechanical energy is lost each cycle.
Answer: The final volume V₂ of the container is 0.039 m³.
Explanation:
Since the temperature is constant, the gas would expand isothermally.
For isothermal expansion,
P₁V₁=P₂V₂
Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.
It is given that:
V₁ = 0.0250 m³
P₁ = 1.5 × 10⁶ Pa
P₂ = 0.950 × 10⁶ Pa
V₂ = ?
⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂
⇒V₂ = 0.039 m³
Hence, the final volume V₂ of the container is 0.039 m³.
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s