answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kati45 [8]
1 year ago
11

If there is a potential difference v between the metal and the detector, what is the minimum energy emin that an electron must h

ave so that it will reach the detector? express your answer in terms of v and the magnitude of the charge on the electron,
e.
Physics
1 answer:
beks73 [17]1 year ago
5 0
The electrical potential energy of a charge q located at a point at potential V is given by
U=qV
Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be
\Delta U = q (V_2 -V_1)=q \Delta V

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to 
\Delta U = e V
Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
E_{min} = \Delta U = eV
You might be interested in
A 10N force pulls to the right and friction opposes 2N. If the object is 20kg,find the acceleraton.
zmey [24]

Force = mass * acceleration

10 N - 2 N = 20 kg * acceleration

8 N = 20 kg * acceleration

8 / 20 = acceleration

2/5 m/s^2 = acceleration

8 0
1 year ago
Read 2 more answers
Drag the tiles to the correct boxes to complete the pairs. Match the sentences with the steps of the scientific method
Assoli18 [71]

Solution:

Make an Observation - An indoor plant in a dark room withers faster than the same plant in a room with ample sunlight.

Ask a question- Why do certain indoor plants die faster based on where they are placed in the house?

State a hypothesis- Sunlight is probably essential for plants to grow and live.

Run an experiment- Get two potted plants. Cover one with black paper. Place both plants outside in sunlight. See what happens to each plant after one week.

Analyze the results-The plant in the pot with black paper withered. The other plant was healthy.

Communicate the results to others - Plants need sunlight to make food so they can live.

4 0
2 years ago
A teacher sets up a stand carrying a convex lens of focal length 15 cm at 20.5 cm mark on the optical bench. She asks the studen
Brums [2.3K]
We get the clearest image if there is no magnification. When we have no magnification the image and real object have the same size.
If we look at the diagram that I  attached we can see that:
\frac{h_i}{h_0}=\frac{d_i}{d_0}
Two triangles that I marked are similar and from this we get:
\frac{h_i}{h_0}=\frac{d_i-f}{f}
The image and the object must have the same height so we get:
\frac{h_i}{h_0}=\frac{d_i-f}{f};h_i=h_0\\
1=\frac{d_i-f}{f}\\
d_i=2f
This tells how far the screen should be from the lens. 
The position of the screen on the optical bench is:
S=20.5cm+2f=20.5+2\cdot 15cm=50.5cm

8 0
1 year ago
The velocity versus time graph of particle A is tangent to the velocity versus time graph for particle B at point O. What is the
lara [203]
As velocities are tangent, the value of both Particle A and Particle B would be same for that point O (Intersecting point)

a = v / t
Here, v = 7, t = 6
So, a = 7/6
a = 1.17 
As the graph is decreasing, value of acceleration would be negative.
So, a = -1.17 m/s²

In short, Your Answer would be Option C

Hope this helps!
7 0
1 year ago
A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
GuDViN [60]

Answer:

The total charge on the rod is 47.8 nC.

Explanation:

Given that,

Charge = 5.0 nC

Length of glass rod= 10 cm

Force = 840 μN

Distance = 4.0 cm

The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector

We need to calculate the electric field

Using formula of electric field intensity

E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

Where, Q = charge on the rod

The force is on the charged bead of charge q placed in the electric field of field strength E

Using formula of force

F=qE

Put the value into the formula

F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

We need to calculate the total charge on the rod

Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}

Put the value into the formula

Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}

Q=47.8\times10^{-9}\ C

Q=47.8\ nC

Hence, The total charge on the rod is 47.8 nC.

6 0
2 years ago
Other questions:
  • In a concrete mixer, cement, gravel, and water are mixed by tumbling action in a slowly rotating drum. if the drum spins too fas
    6·1 answer
  • A satellite orbiting above the earth needs no power source to keep orbiting the earth. The best explanation for this involves th
    11·2 answers
  • Which of the following diagrams involves a virtual image ?
    9·1 answer
  • One game at the amusement park has you push a puck up a long, frictionless ramp. You win a stuffed animal if the puck, at its hi
    6·1 answer
  • A motorcycle has a magnet attached to the rim of its front wheel. The front tire has a diameter of 60 cm. A magnetic pickup is a
    15·1 answer
  • in a hydraulic press the small cylinder has a diameter 10.0cm while the large has 25cm if the force of 600N is applied to the sm
    8·2 answers
  • The young tree was bent and has been brought into a vertical position by the three guy cables. If tension at AB = 0, AC = 10 lb,
    10·1 answer
  • A 0.65-T magnetic field is perpendicular to a circular loop of wire with 73 turns and a radius of 18 cm. If the magnetic field i
    5·1 answer
  • A solid conducting sphere of radius 5.00 cmcarries a net charge. To find the value of the charge, you measure the potential diff
    9·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!