Calculate the weight of the table through the equation,
W = mg
where W is the weight, m is the mass, and g is the acceleration due to gravity. Substituting the known values,
W = (0.44 kg)(9.8 m/s²)
<em>W = 4.312 N</em>
The components of this weight can be calculated through the equation,
Wx = W(sin θ)
and Wy = W(cos θ)
x - component:
Wx = W(sin θ)
Substituting,
Wx = (4.312 N)(sin 150°) = <em>2.156 N</em>
Wy = (4.312 N)(cos 150°) =<em> -3.734 N</em>
<h2>Solution :</h2>
Here ,
• Height of sign post = 30 m
• Distance between signpost and truck = 24 m
Let the
• Top of signpost = A
• Bottom of signpost = B
• The end of truck facing sign post be = C
Now as we can clearly imagine that the ladder will act as an hypotenuse to the Triangle ABC .
Where
• AB = Height of signpost = 30 m
• BC = distance between both = 24 m
• AC = Minimum length of ladder
→ AC² = AB² + BC² ( As we can see AB is perpendicular to BC )
→ AC² = (30)² + (24)²
→ AC² = 900 + 576
→ AC² = 1476
→ AC = 38.41875
or AC apx = 38.42
So minimum height of ladder = 38.42
Answer:
1) The magnetic field outside the loop is zero.
In region III the magnetic fields due to the two wire loops point in the opposite direction andhence cancel each other. Therefore the magnetic field is zero in region I, III and V
The diagram is attached
A. The horizontal velocity is
vx = dx/dt = π - 4πsin (4πt + π/2)
vx = π - 4π sin (0 + π/2)
vx = π - 4π (1)
vx = -3π
b. vy = 4π cos (4πt + π/2)
vy = 0
c. m = sin(4πt + π/2) / [<span>πt + cos(4πt + π/2)]
d. m = </span>sin(4π/6 + π/2) / [π/6 + cos(4π/6 + π/2)]
e. t = -1.0
f. t = -0.35
g. Solve for t
vx = π - 4πsin (4πt + π/2) = 0
Then substitute back to solve for vxmax
h. Solve for t
vy = 4π cos (4πt + π/2) = 0
The substitute back to solve for vymax
i. s(t) = [<span>x(t)^2 + y</span>(t)^2]^(1/2)
h. s'(t) = d [x(t)^2 + y(t)^2]^(1/2) / dt
k and l. Solve for the values of t
d [x(t)^2 + y(t)^2]^(1/2) / dt = 0
And substitute to determine the maximum and minimum speeds.
Answer:A- mass charge.
This can also be called current.
Explanation:
This is Kirchhoff’s 2nd law.
Kirchhoff’s junction law states that the sum of current(mass charge) flowing in and out of the junction must be equal to zero. This law emphasizes conservation of charge and energy. Charge is also a form of energy and it can neither be created nor destroyed.