Answer:
Diameter of the cylinder will be 
Explanation:
We have given young's modulus of steel
Change in length 
Length of rod 
Load F = 11100 KN
Strain is given by 
We know that young's modulus 
So 

We know that stress 
So 

So 
<span>Use the kinematic equation vf^2 = vi^2 + 2ad where;
vf = ?
vi = 0 m/s
a = 9.8 m/s^2
d1 = 10 m
d2 = 25 m
final velocity at the ground (d1): vf = sqrt(2)(9.8)(10) = 14 m/s
final velocity to the bottom of the cliff (d2): vf = sqrt(2)(9.8)(25) = 22.14 m/s
</span>
Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²
Answer:
λ₂ = 357.3 nm
Explanation:
The expression for double-slit interference is
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference.
The initial data corresponds to a constructive interference, they indicate that we are in the fourth order (m = 4), let's look for the separation of the slits
d sin θ = m λ₁
now ask for destructive interference for m = 4
d sin θ = (m + ½) λ₂
we match these two expressions
m λ₁ = (m + ½) λ₂
λ₂ = ( m / m + ½) λλ₁
let's calculate
λ₂ =
λ₂ = 357.3 nm
Answer:
T=21.7 min
Explanation:
The volume of one mole of gas at STP is
22.4 L
10.0 L
then has
n'=10.0/22.4 moles
the total energy released is then
Et= (10.0/22.4)* 286 kJ
Et=127.678 KJ
Power*time = energy, so time = energy/power =
Power=100W
Power=100 J/s
T= 127.6785kJ/100J/s = 1277 sec
T=1276.78sec/60min=21.3 min