Answer:
the inductive reactance of the coil is 1335.35 Ω
Explanation:
Given;
inductance of the coil, L = 250 mH = 0.25 H
effective current through the coil, I = 5 mA
frequency of the coil, f = 850 Hz
The inductive reactance of the coil is calculated as;

Therefore, the inductive reactance of the coil is 1335.35 Ω
Answer:
The answer to your question is Decrease
Answer:
The time constant and its uncertainty is t ± Δt = 0.526 ± 0.057 s
Explanation:
If we make a comparison we have to:
y = A*(1-e^-(C*x)) + B
If the time remains constant we have to:
t = R*C = 1/C
In this way we calculate the time constant and its uncertainty. this will be equal to:
t ± Δt = (1/1.901) ± (0.2051/1.901)*(1/1.901) = 0.526 ± 0.057 s
The Volume of the ice block is 5376.344 cm^3.
The density of a material is define as the mass per unit volume.
Here, the density of ice given is 0.93 g/cm^3
Mass of the ice block given is 5 kg or 5000 g
Now calculate the volume of the ice block
density=mass/volume
0.93=5000/Volume
Volume =5376.344 cm^3
Therefore the volume of ice block is 5376.344 cm^3
Answer:
1.125 N s towards East
Explanation:
since both velocities are in same direction hence change in velocity is
Δ V = final - initial
= 2.00 - 0.50
= 1.50 towards East
impulse = change of linear momentum
= mass × change in velocity
= 0.75 ×1.50
= 1.125 N s towards East