The question is asking to choose among the following choices that could complete the question about the inertia, base on my research and further investigation, the possible answer would be letter B. Gravity. I hope you are satisfied with my answer and feel free to ask for more
Answer:
Part a)
Direction of net force is

Part b)
Direction of the velocity is given as

Explanation:
As we know that the velocity of the particle is given as

now the acceleration is given as


now magnitude of net acceleration is given as




Part a)
Now direction of net force is given as




Part b)
Direction of the velocity is given as




<span>Let m1=10kg and m2=5kg and for our calculations assume right is positive and up is positive (note: for block hanging, the x axis is vertical so tilt your head to help)
For m1
Sigma Fx = ma
T - m1gsin35 = m1a where T = tension
For m2
m2g - T = m2a
Add equation together
m1a + m2a = T-m1gsin35 + m2g - T
a(m1 + m2) = m2g - m1gsin35
a= (5*9.8 - 10*9.8*sin35)/(10 + 5)
a= -0.48m/s/s
So the system is moving in the opposite direction of our set coordinate system where we said right positive, its negative so its moving left therefore down the ramp</span>
The solution would be like this for this specific problem:
F = (G Me Mo) / Re^2
F / Mo = (G Me) / Re^2
G = gravitational constant
= 6.67384 * 10^-11 m3 kg-1 s-2
Me = 5.972 * 10^24 kg
Re^2 = (6.38 * 10^6)^2 m^2
= 40.7044 * 10^12 m^2 = 4.07044 * 10^13 m^2
G Me / Re^2 = (6.67384 * 10-11
* 5.972 * 10^24) / 4.0704 * 10^13 = 9.7196 m/s^2
9.7196 m/s^2 = acceleration
due to Earth’s gravity
Therefore, the value of the composite constant (Gme / r^2e) that is to be
multiplied by the mass of the object mo in the equation above is 9.7196
m/s^2.
U = 0, initial vertical velocity
Neglect air resistance, and g = 9.8 m/s².
The time, t, required for the pen to attain a vertical velocity of 19.62 m/s is given by
19.62 m/s = 0 + (9.8 m/s²)*(t s)
t = 19.62/9.8 = 2.00 s
Answer: 2.0 s