answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kakasveta [241]
2 years ago
14

The axoplasm of an axon has a resistance Rax. The axon's membrane has both a resistance (Rmem) and a capacitance (Cmem). A singl

e segment of an axon can be modeled by a circuit with Rmem and Cmem in parallel with each other and in series with an open switch, a battery, and Rax?.
Imagine the voltage of the battery is ?V?.

Imagine that after a very long time there is a current I going through the battery. The potential difference across the membrane can be written as I Rmem.

Write down another expression for the potential difference across the membrane using all or some of the given variables, except Rmem.

Physics
1 answer:
dybincka [34]2 years ago
8 0

Answer:

The expression is Vmem = ΔV - I*Rax

Explanation:

According to the picture, if switch S is closed, the Cmem will be short. If Vcap = 0, the current flows through the capacitor only (not through Rmem), thus Vmem = 0 after closing S.

When C is fully charged, then we have:

Vmem = ΔV - I*Rax

You might be interested in
An object is moving east, and its velocity changes from 65 m/s to 25 m/s in 10 seconds. Which describes the acceleration? negati
hammer [34]

Answer:

we could use the formula, v=u+at,

65=25+a (10), a=4 , since the motion is declerating we have a=-4 m/s2

5 0
2 years ago
An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
skelet666 [1.2K]

Answer:

(a) v = 3..6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

Explanation:

from the question we have the following:

mass of the car (Mc) = 24,000 kg

initial velocity of the car (u) = 4 m/s

mass of water (Mw) = 3000 kg

final velocity of the car (v) = ?

(a) we can calculate the final momentum of the car by applying the conservation of momentum where

initial momentum = final momentum

Mc x U = (Mc + Mw) x V

24000 x 4 = (24000 + 3000) x v

96,000 = 27000v

v =3.6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

7 0
2 years ago
For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
Inessa05 [86]

Answer:

The rotational frequency must be 2073.56 rpm

Explanation:

Notice that we need to obtain a rotational frequency in "rpm" (revolutions per minute), so we better start by converting all the given information into the appropriate units:

The magnitude of the velocity for the pitch is given in miles per hour, while the diameter of the machine's wheels is given in cm. Let's reduce all units of length into meters(using the metric system), and the units of time into minutes.

Conversion of the 85 mph  speed into meters per minute:

Recall that 1 mile equals 1609.34 meters, and that 1 hour equals 60 minutes, so we write:

85\,\frac{miles}{hour} = 85\,\frac{1609.34\,m}{60\,min} =2279.898\,\frac{m}{min}

which can be rounded to approximately 2280 m/min.

We also convert the 35 cm diameter into meters:

diameter = 0.35 m

Now we use the equation that relates angular velocity (w) and the radius (R) of the circular movement, with tangential velocity (v_t), in order to obtain the angular velocity of the wheel:

v_t=w*R\\w=\frac{v_t}{R}

but recall that this angular velocity is given in radians per unit of time. So first find the radius of the wheel (half its diameter). R = 0.175 m

So we have:

w=\frac{2280}{0.175}\frac{radians}{min} \\w=13028.57\,\frac{radians}{min}

And now, recalling that 2\pi radians equal one revolution, we convert the angular velocity ot revolutions per minute by dividing the "w" we found by 2\pi :

rotational frequency = \frac{13028.57}{2\pi} \frac{rev}{min} = 2073.56 \frac{rev}{min}

6 0
2 years ago
At time t, gives the position of a 3.0 kg particle relative to the origin of an xy coordinate system ( ModifyingAbove r With rig
Elena-2011 [213]

Complete Question

  The complete Question is shown on the first uploaded image

Answer:

a

The torque acting on the particle is  \tau = 48t \r k

b

The magnitude of the angular momentum increases relative to the origin

Explanation:

From the equation we are told that

      The position of the particle is   \= r = 4.0 t^2 \r i - (2.0 t - 6.0 t^2 ) \r j

       The mass of the particle is m = 3.0 kg

        The time is  t

   

The torque acting on  the particle is mathematically represented as

           \tau = \frac{ d \r l }{dt}

where \r l is change in angular momentum which is mathematically represented as

       \r l = m (\r r \ \ X  \ \ \r v)

Where X mean cross- product

   \r v is the velocity which is mathematically represented as

           \r v = \frac{d \r r }{dt}

Substituting for  \r r

           \r v = \frac{d }{dt} [ 4 t^2 \r i - (2t + 6t^2 ) \r j]

           \r v =  8t \r i - (2 + 12 t) \r j

Now the cross product of \r r \ and \ \r v is  mathematically evaluated as    

          \r r  \  \ X \ \ \r v = \left[\begin{array}{ccc}{\r i}&{\r j}&{\r k}\\{4t^2}&{-2t -6t^2}&0\\{8t}&{-2 -12t}&0\end{array}\right]

                       = 0 \r i + 0 \r j + (- 8t^2 -48t^3 + 16t^2 + 48t^3 ) \r k

                      \r r \ \  X \ \ \r v = 8t^2 \r k

So the angular momentum becomes

       \r l = m (8t^2 \r k)

Substituting for m

      \r l = 3 *  (8t^2 \r k)

      \r l =24t^2  \r k

Substituting into equation for torque

       \tau = \frac{d}{dt} [24t^2 \r k]

       \tau = 48t \r k

The magnitude of the angular momentum can be evaluated mathematically as

        |\r l| = \sqrt{(24 t^2) ^2}

        |\r l| = 24 t^2

From the is equation we see that the magnitude of the angular momentum is varies directly with square of the time so it would relative to the origin because at the origin t= 0s and we move out from origin t increases hence angular momentum increases also

4 0
2 years ago
An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
yawa3891 [41]

Answer:

Isothermal :   P2 = ( P1V1 / V2 ) ,  work-done pdv = nRT * In( \frac{V2}{v1} )

Adiabatic : : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }  , work-done =

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Explanation:

initial temperature : T

Pressure : P

initial volume : V1

Final volume : V2

A) If expansion was isothermal calculate final pressure and work-done

we use the gas laws

= PIVI = P2V2

Hence : P2 = ( P1V1 / V2 )

work-done :

pdv = nRT * In( \frac{V2}{v1} )

B) If the expansion was Adiabatic show the Final pressure and work-done

final pressure

P1V1^y = P2V2^y

where y = 5/3

hence : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }

Work-done

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Where    T2 = T1V1^(2/3)/V2^(2/3)

3 0
2 years ago
Other questions:
  • It takes 56.5 kilojoules of energy to raise the temperature of 150 milliliters of water from 5°C to 95°C. If you
    6·1 answer
  • A small sphere with mass m carries a positive charge q and is attached to one end of a silk fiber of length L. The other end of
    5·1 answer
  • Joel uses a claw hammer to remove a nail from a wall. He applies a force of 40 newtons on the hammer. The hammer applies a force
    5·2 answers
  • An undiscovered planet, many light-years from Earth, has one moon which has a nearly circular periodic orbit. If the distance fr
    9·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • You are to design a rotating cylindrical axle to lift 800 N buckets of cement from the ground to a rooftop 78.0 m above the grou
    10·1 answer
  • 2 boxes connected by a plus sign hold Wave 1 on top and Wave 2 on bottom. The crests of Wave 1 line up with the troughs of Wave
    9·2 answers
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
  • A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26
    5·1 answer
  • An empty glass beaker has a mass of 103 g. When filled with water, it has a total mass of 361g.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!