answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qaws [65]
2 years ago
11

A snowstorm was predicted in Chicago. Identify the possible upper air temperature, surface temperature, and air pressure of Chic

ago on that day. Normal atmospheric pressure is 29.9 inches of mercury.
Physics
2 answers:
scZoUnD [109]2 years ago
8 0

The answer is 40 for Upper Air Temperature, 29 for Surface Temperature, and 30 for Air Pressure. Hope I Helped!

OverLord2011 [107]2 years ago
7 0
The correct answer for this question is this one:

<span>A snowstorm was predicted in Chicago. The possible upper air temperature, surface temperature, and air pressure of Chicago on that day. Normal atmospheric pressure is 29.9 inches of mercury.  </span><em>I'm pretty sure the answer is 40 for upper air, 29 for surface temp, and 30 for air pressure. </em>Hope this helps answer your question and have a nice day ahead.

You might be interested in
A wire of 1mm diameter and 1m long fixed at one end is stretched by 0.01mm when a lend of 10 kg is attached to its free end.calc
Otrada [13]

Answer:

E = 1.25×10¹³ N/m²

Explanation:

Young's modulus is defined as:

E = stress / strain

E = (F / A) / (dL / L)

E = (F L) / (A dL)

Given:

F = 10 kg × 9.8 m/s² = 98 N

L = 1 m

dL = 10⁻⁵ m

A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²

Solve:

E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)

E = 1.25×10¹³ N/m²

Round as needed.

5 0
2 years ago
A vessel, divided into two parts by a partition, contains 4 mol of nitrogen gas at 75°C and 30 bar on one side and 2.5 mol of ar
Elena L [17]

Answer:

assume nitrogen is an ideal gas with cv=5R/2

assume argon is an ideal gas with cv=3R/2

n1=4moles

n2=2.5 moles

t1=75°C   <em>in kelvin</em> t1=75+273

t1=348K

T2=130°C  <em>in kelvin</em> t2=130+273

t2=403K

u=пCVΔT

U(N₂)+U(Argon)=0

<em>putting values:</em>

=>4x(5R/2)x(Tfinal-348)=2.5x(3R/2)x(T final-403)

<em>by simplifying:</em>

Tfinal=363K

6 0
2 years ago
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
Shalnov [3]

Answer:

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

Explanation:

A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.

A) What is the wavefunction y(x,t) for the standing wave that is produced?

B) In which harmonic is the standing wave oscillating?

C) What is the frequency of the fundamental oscillation?

a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).

b. lambda=2L/n

when comparing the wave equation with the general wave equation , we get the wavelength to be

2*pi*x/lambda=6.98x

lambda=0.9m

we use the equation

lambda=2L/n

n=number of harmonics

L=length of string

0.9=2(1.35)/n

n=2.7/0.9

n=3

third harmonic

c. to calculate frequency , we compare with general wave equation

y(x,t)=Acos(kx+ωt)

from ωt=742t

ω=742

ω=2*pi*f

742/2*pi

f=118.09Hz

8 0
2 years ago
An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte
aniked [119]

Answer:

35,79 meters

Explanation:

So, we got an archer, and we got a target. Lets call the distance between this two d.

Now, the archer fires the arrow, that, in a time t_{arrow} travels the distance d with a speed v_{arrow} of 40 m/s and hits the target. We can see that the equation will be:

v_{arrow} * t_{arrow} = d\\ \\40 \frac{m}{s} * t_{arrow} = d

Immediately after this, the arrow produces a muffled sound, which will travel the distance d at  340 m/s in a time t_{sound}. Obtaining :

v_{sound} * t_{sound} = d\\ \\340 \frac{m}{s} * t_{sound} = d.

Finally, the sound reaches the archer, exactly 1 second after he fired the bow, so:

t_{arrow} + t _{sound} = 1 s.

This equation allows us to write:

t _{sound} = 1 s - t_{arrow}.

Plugging this  relationship in the distance equation for the sound:

340 \frac{m}{s} * t_{sound} = d \\ \\ 340 \frac{m}{s} * (1 s- t_{arrow}) = d.

Now, we can replace d from the first equation, and obtain:

40 \frac{m}{s} * t_{arrow} = d \\ 40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * (1 s- t_{arrow}).

Now, we can just work a little bit:

40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * 1 s - 340 \frac{m}{s} * t_{arrow} \\ \\ 40 \frac{m}{s} * t_{arrow} + 340 \frac{m}{s} * t_{arrow} = 340 m \\ \\ 380 \frac{m}{s} * t_{arrow} = 340 m \\ \\ t_{arrow} = \frac{340 m}{380 \frac{m}{s}} \\ \\ t_{arrow} = 0.8947 s.

Now, we can just plug this value into the first equation:

40 \frac{m}{s} * t_{arrow} = d

40 \frac{m}{s} * 340/380 s = 35,79 s = d

6 0
2 years ago
A student placed a pencil in a cup of water. The pencil appears broken because light- always travels in a straight line makes th
il63 [147K]
<span>None of the choices makes a correct statement.  The third choice is close,
but misleading.

The pencil appears broken because light bends away from a straight line
when it crosses the boundary between air and water.</span>
5 0
2 years ago
Read 2 more answers
Other questions:
  • A solid disk of mass m1 = 9.3 kg and radius R = 0.22 m is rotating with a constant angular velocity of ω = 31 rad/s. A thin rect
    10·1 answer
  • At the equator, the earth’s field is essentially horizontal; near the north pole, it is nearly vertical. In between, the angle v
    8·1 answer
  • A girl tosses a stone into the air with an initial upward velocity of 8.00 meters/second8.00 meters/second and hears the splash
    7·1 answer
  • Which of the following best describes a capacitor?
    13·2 answers
  • The drag force F on a boat varies jointly with the wet surface area A of the boat and the square of the speed s of the boat. A b
    15·1 answer
  • a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
    11·1 answer
  • A kickball is kicked straight up at a speed of 22.4m/s. how high does it go
    8·1 answer
  • Which change will cause the gravitational force between a baseball and a soccer ball to increase?
    9·2 answers
  • Vinny is on a motorcycle at rest, 200 m away from a ramp that jumps over a gully. Calculate the minimum constant acceleration Vi
    9·1 answer
  • A large semi-truck, with mass 31x crashes into a small sedan with mass x . If the semi-truck exerts a force F on the sedan, what
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!