Answer:
1)

2)

Explanation:
<u>Projectile Motion</u>
When an object is launched near the Earth's surface forming an angle
with the horizontal plane, it describes a well-known path called a parabola. The only force acting (neglecting the effects of the wind) is the gravity, which acts on the vertical axis.
The heigh of an object can be computed as

Where
is the initial height above the ground level,
is the vertical component of the initial velocity and t is the time
The y-component of the speed is

1) We'll find the vertical component of the initial speed since we have not enough data to compute the magnitude of 
The object will reach the maximum height when
. It allows us to compute the time to reach that point

Solving for 

Thus, the maximum heigh is

We know this value is 8 meters

Solving for 

Replacing the known values


2) We know at t=1.505 sec the ball is above Julie's head, we can compute




Answer:
0.00066518 Nm
Explanation:
v = Velocity = 1.2 m/s
r = Distance to head = 2.3 cm
= Final angular velocity
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 2.4 s
Angular speed is given by

From equation of rotational motion

Torque

The torque of the motor is 0.00066518 Nm
Answer:
The lighter frog goes higher than the heavier frog.
The lighter frog is moving faster than the heavier frog
Explanation:
If both frogs have the same kinetic energy when they leave the ground, the following equality applies:

Now, if the only force acting on the frogs is gravity, when they reach to the maximum height, we can apply the following kinematic equation:

When h= hmax, the object comes momentarily to an stop, so vf =0
Solving for hmax:

As the lighter frog, in order to have the same kinetic energy than the heavier one, has a greater initial velocity, it will go higher than the other.
As a consequence of both having the same kinetic energy, the lighter frog will be moving faster than the heavier frog.
Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
Answer:
The answer is 26/98 how i did this is i divided them mulitiplyed well i cant really explain it but im pretty dure its right
Explanation: