Answer:

Explanation:
given,
radius of loop = 12.1 m
to find the minimum speed transverse by the rider to not to fall out upside down
centripetal force = 
gravitational force = m g
computing both the equation]





Look at the title of the graph, in small print under it.
Each point is "compared to 1950-1980 baseline". So the set of data for those years is being compared to itself. No wonder it matches up pretty close !
Answer:
<em>The object could fall from six times the original height and still be safe</em>
Explanation:
<u>Free Falling</u>
When an object is released from rest in free air (no friction), the motion is completely dependant on the acceleration of gravity g.
If we drop an object of mass m near the Earth surface from a height h, it has initial mechanical energy of

When the object strikes the ground, all the mechanical energy (only potential energy) becomes into kinetic energy

Where v is the speed just before hitting the ground
If we know the speed v is safe for the integrity of the object, then we can know the height it was dropped from

Solving for h

If the drop had occurred in the Moon, then

Where hM, vM and gM are the corresponding parameters on the Moon. We know v is the safe hitting speed and the gravitational acceleration on the Moon is g_M=1/6 g


This means the object could fall from six times the original height and still be safe
Answer:b)1770 kWh
Explanation:
Given
volume of water 
Temperature rise 

also 1 kg mass is approximately is 1 gallon
therefore 40,000 gallon is equivalent to 3.8\times 40000 kg
heat Required to raise temperature is




