Note:
The height of a high bar from the floor is h = 2.8 m (or 9.1 ft).
It is not provided in the question, so the standard height is assumed.
g = 9.8 m/s², acceleration due to gravity.
Note that the velocity and distance are measured as positive upward.
Therefore the floor is at a height of h = -2.8 m.
First dismount:
u = 4.0 m/s, initial upward velocity.
Let v = the velocity when the gymnast hits the floor.
Then
v² = u² - 2gh
v² = 16 - 2*9.8*(-2.8) = 70.88
v = 8.42 m/s
Second dismount:
u = -3.0 m/s
v² = (-3.0)² - 2*9.8*(-2.8) = 63.88 m/s
v = 7.99 m/s
The difference in landing velocities is 8.42 - 7.99 = 0.43 m/s.
Answer:
First dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 8.42 m/s downward
Second dismount:
Acceleration = 9.8 m/s² downward
Landing velocity = 7.99 m/s downward
The landing velocities differ by 0.43 m/s.
Answer:
If they are metallic spheres they are connected to earth and a charged body approaches
non- metallic (insulating) spheres in this case are charged by rubbing
Explanation:
For fillers, there are two fundamental methods, depending on the type of material.
If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.
If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.
1.
Answer:
a) It is less
Explanation:
By energy conservation we can say that initial potential energy of both child must be equal to the final kinetic energy of the two child.
Since initially they are at same height so we will say that initial potential energy will be given as
and MgH
so the child with greater mass has more energy and hence smaller child will reach with smaller kinetic energy
2.
Answer:
b. The two speeds are equal.
Explanation:
As we know by mechanical energy conservation law we have


since both child starts at same height so here they both will reach the bottom at same speed
3.
Answer:
c. The two accelerations are equal
Explanation:
Since we know that average acceleration of the motion is given as

since here initial and final speeds are same so they both must have same average acceleration here.
Answer:
1410 Hz
Explanation:
Capacitance is reduced by 2, so the angular frequency will increase by a factor of
.