Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
Answer: 140 m
Explanation:
Let's begin by stating clear that motiont is the change of position of a body at a certain time. So, during this motion, the balloon will have a trajectory and a displacement, being both different:
The<u> trajectory</u> is <u>the path followed by the body, the distance it travelled</u> (is a scalar quantity).
The displacement is <u>the distance in a straight line between the initial and final position</u> (is a vector quantity).
So, according to this, the distance the balloon traveled during the first 45 s (its trajectory) is 140 m.
But, if we talk about displacement, we have to draw a straight line between the initial position of the balloon (point 0) to its final position (point 90 m). Being its displacement 95 m.
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
Answer:
The torque in the coil is 4.9 × 10⁻⁵ N.m
Explanation:
T = NIABsinθ
Where;
T is the torque on the coil
N is the number of loops = 9
I is the current = 7.8 A
A is the area of the circular coil = ?
B is the Earth's magnetic field = 5.5 × 10⁻⁵ T
θ is the angle of inclination = 90 - 56 = 34°
Area of the circular coil is calculated as follows;

T = 9 × 7.8 × 0.0227 × 5.5×10⁻⁵ × sin34°
T = 4.9 × 10⁻⁵ N.m
Therefore, the torque in the coil is 4.9 × 10⁻⁵ N.m
Answer:
Explanation:
b ) First is concave lens with focal length f₁ = - 12 cm .
object distance u = - 20 cm .
Lens formula
1 / v - 1 / u = 1 / f
1 / v + 1 / 20 = -1 / 12
1 / v = - 1 / 20 -1 / 12
= - .05 - .08333
= - .13333
v = - 1 / .13333
= - 7.5 cm
first image is formed before the first lens on the side of object.
This will become object for second lens
distance from second lens = 7.5 + 9 = 16.5 cm
c )
For second lens
object distance u = - 16.5 cm
focal length f₂ = + 12 cm ( lens is convex )
image distance = v
lens formula ,
1 / v - 1 / u = 1 / f₂
1 / v + 1 / 16.5 = 1 / 12
1 / v = 1 / 12 - 1 / 16.5
= .08333- .0606
= .02273
v = 1 / .02273
= 44 cm ( approx )
It will be formed on the other side of convex lens
distance from first lens
= 44 + 9 = 53 cm .
magnification by first lens = v / u
= -7.5 / -20 = .375 .
magnification by second lens = v / u
= 44 / - 16.5
= - 2.67
d )
total magnification
= .375 x - 2.67
= - 1.00125
height of final image
= 2.50 mm x 1.00125
= 2.503mm
e )
The final image will be inverted with respect to object because total magnification is negative .