answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
2 years ago
7

A body of mass 8 kg moves in a (counterclockwise) circular path of radius 10 meters, making one revolution every 10 seconds. You

may assume the circle is in the xy-plane, and so you may ignore the third component. A. Compute the centripetal force acting on the body.
Physics
1 answer:
Sav [38]2 years ago
8 0

Answer:

Centripetal force is equal to 31.55 N

Explanation:

We have given mass of the body m = 8 kg

Radius of the circular path r = 10 m

It is given that it makes 1 revolution in 10 seconds

Distance traveled in 10 seconds is equal to d=2\pi r=2\times 3.14\times 10=62.8m

Velocity is equal to velocity=\frac{distance}{time}=\frac{62.8}{10}=6.28m/sec

We have to find the centripetal force

Centripetal force is equal to F=\frac{mv^2}{r}=\frac{8\times 6.28^2}{10}=31.55N

So centripetal force will be equal to 31.55 N

You might be interested in
A girl is sledding down a slope that is inclined at 30º with respect to the horizontal. The wind is aiding the motion by providi
OleMash [197]

Answer:

The sled required 9.96 s to travel down the slope.

Explanation:

Please, see the figure for a description of the problem. In red are the x and y-components of the gravity force (Fg). Since the y-component of Fg (Fgy) is of equal magnitude as Fn but in the opposite direction, both forces get canceled.

Then, the forces that cause the acceleration of the sled are the force of the wind (Fw), the friction force (Ff) and the x-component of the gravity force (Fgx).

The sum of all these forces make the sled move. Finding the resulting force will allow us to find the acceleration of the sled and, with it, we can find the time the sled travel.

The magnitude of the friction force is calculated as follows:

Ff = μ · Fn

where :

μ = coefficient of kinetic friction

Fn =  normal force

The normal force has the same magnitude as the y-component of the gravity force:

Fgy = Fg · cos 30º = m · g · cos 30º

Where

m = mass

g = acceleration due to gravity

Then:

Fgy = m · g · cos 30º = 87.7 kg · 9.8 m/s² · cos 30º

Fgy = 744 N

Then, the magnitude of Fn is also 744 N and the friction force will be:

Ff = μ · Fn = 0.151 · 744 N = 112 N

The x-component of Fg, Fgx, is calculated as follows:

Fgx = Fg · sin 30º = m·g · sin 30º = 87.7 kg · 9.8 m/s² · sin 30º = 430 N

The resulting force, Fr, will be the sum of all these forces:

Fw + Fgx - Ff = Fr

(Notice that forces are vectors and the direction of the friction force is opposite to the other forces, then, it has to be of opposite sign).

Fr = 161 N + 430 N - 112 N = 479 N

With this resulting force, we can calculate the acceleration of the sled:

F = m·a

where:

F = force

m = mass of the object

a = acceleration

Then:

F/m = a

a = 479N/87.7 kg = 5.46 m/s²

The equation for the position of an accelerated object moving in a straight line is as follows:

x = x0 + v0 · t + 1/2 · a · t²

where:

x = position at time t

x0 = initial position

v0 = initial velocity

t = time

a = acceleration

Since the sled starts from rest and the origin of the reference system is located where the sled starts sliding, x0 and v0 = 0.

x = 1/2· a ·t²

Let´s find the time at which the position of the sled is 271 m:

271 m = 1/2 · 5.46 m/s² · t²

2 · 271 m / 5.46 m/s² = t²

<u>t = 9.96 s </u>

The sled required almost 10 s to travel down the slope.

8 0
2 years ago
Mary takes 6.0 seconds to run up a flight of stairs that is 102 meters long. if mary's weight is 87 newtons, what power has mary
pentagon [3]
Thank you for posting your question here at brainly. I hope the answer will help. Below are the choices that can be found elsewhere:

 <span>A. 1.5 * 10^3 Watts 
B. 7.3 * 10^2 Watts 
C. 3.5 * 10^2 Watts 
D. 2.5 * 10^2 Watts
</span>
 <span>Work = force*displacement = 10^2*87 = 8,700 joule 
Power = work/time = 8,700/6 = 1.45*10^3 (rounded up to 1.5 kw). The answer is A. </span>
3 0
2 years ago
Read 2 more answers
What factors affect attractive force
Inga [223]

Two Factors That Affect How Much Gravity Is on an Object. Gravity is the force that gives weight to objects and causes them to fall to the ground when dropped. Two major factors, mass and distance, affect the strength of gravitational force on an object.

8 0
2 years ago
Read 2 more answers
An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined
MrRa [10]

Incomplete question as the car's  speed is missing.I have assumed car's  speed as 6.0m/s.The complete question is here

An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined weight of the car and riders is 6.00 kN, and the radius of the circle is 15.0 m. At the top of the circle, (a) what is the force FB on the car from the boom (using the minus sign for downward direction) if the car's speed is v 6.0m/s

Answer:

F_{B}=-5755N

Explanation:

Set up force equation

∑F=ma

∑F=W+FB

\frac{mv^{2} }{R}=W+F_{B}\\  F_{B}=\frac{mv^{2} }{R}-W\\F_{B}=\frac{(W/g)v^{2} }{R}-W\\F_{B}=\frac{(6000N/9.8m/s^{2} )(6m/s)^{2} }{(15m)}-6000N\\F_{B}=-5755N

The minus sign for downward direction

6 0
2 years ago
A green laser pointer has a wavelength of 532 nm. what is the energy of one mol of photons generated from this device?
PSYCHO15rus [73]

We have energy E = hc/λ, where h is Planck's constant c is speed of light and λ is the wavelength.

So Energy , E=\frac{6.63*10^{-34}*3*10^8}{532*10^{-9}} =3.73*10^{-19}J

Energy of one mol = 3.73*10^{-19}*6.023*10^{23}=225 kJ/mol

Energy of one mol of photons generated from this device = 225 kJ

3 0
2 years ago
Other questions:
  • 3. You have three stars. Star A has an apparent magnitude of 7, Star B has an apparent magnitude of 2, and Star C has an apparen
    14·1 answer
  • Keisha finds instructions for a demonstration on gas laws. 1. Place a small marshmallow in a large plastic syringe. 2. Cap the s
    15·2 answers
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • Hanging by a thread. Two metal spheres hang from nylon threads and attract each other when brought close together. (i) What can
    13·1 answer
  • Give two ways of reversing the direction of the forces on the coil in the electric motor?​
    10·1 answer
  • A mechanic uses a hydraulic car jack to lift the front end of a car to change the oil. The jack used exerts 8,915 N of force fro
    6·1 answer
  • Calculate the energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0 °C to ice at –20.0 °C. Assume
    15·1 answer
  • The resistance of a very fine aluminum wire with a 20 μm × 20 μm square cross section is 1200 Ω . A 1200 Ω resistor is made by w
    7·1 answer
  • A longitudinal wave is observed to be moving along a slinky. Adjacent crests are 2.4 m apart. Exactly 6 crests are observed to m
    11·1 answer
  • A container contains 200g of water at initial temperature of 30°C. An iron nail of mass 200g at temperature of 50°C is immersed
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!