answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
2 years ago
7

A manometer is used to measure the air pressure in a tank. the fluid used has a specific gravity of 1.25, and the differential h

eight between the two arms of the manometer is 28 in. if the local atmospheric pressure is 12.7 psia, determine the absolute pressure in the tank for the cases of the manometer arm with the (a) higher and (b) lower fluid level being attached to the tank.
Physics
1 answer:
BartSMP [9]2 years ago
4 0
Specific Gravity of the fluid = 1.25 
Height h = 28 in
 Atmospheric Pressure = 12.7 psia
 Density of water = 62.4 lbm/ft^3 at 32F
 Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
 Density of the Fluid p = 78 lbm/ft^3
 Difference in pressure as we got the differential height, dP = p x g x h  dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
 Difference in pressure = 1.26 psia
 (a) Pressure in the arm that is at Higher 
 P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
 (b) Pressure in the tank that is at Lower
 P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
You might be interested in
An electron is trapped in a square well of unknown width, L. It starts in unknown energy level, n. When it falls to level n-1 it
Lady bird [3.3K]

Answer:

(1) En to n-1 = 0.55 ev

(2) En-1 to n-2 = 0.389 ev

(3) ninitial =4

(4) L =483.676 ×10^-11 nm

(5) λlongest= 1773.33 nm

Explanation:

Detailed explanation of answer is given in the attached files.

4 0
2 years ago
a block of mass m slides along a frictionless track with speed vm. It collides with a stationary block of mass M. Find an expres
shusha [124]

Answer:

Part a) When collision is perfectly inelastic

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b) When collision is perfectly elastic

v_m = \frac{m + M}{2m}\sqrt{5Rg}

Explanation:

Part a)

As we know that collision is perfectly inelastic

so here we will have

mv_m = (m + M)v

so we have

v = \frac{mv_m}{m + M}

now we know that in order to complete the circle we will have

v = \sqrt{5Rg}

\frac{mv_m}{m + M} = \sqrt{5Rg}

now we have

v_m = \frac{m + M}{m} \sqrt{5Rg}

Part b)

Now we know that collision is perfectly elastic

so we will have

v = \frac{2mv_m}{m + M}

now we have

\sqrt{5Rg} = \frac{2mv_m}{m + M}

v_m = \frac{m + M}{2m}\sqrt{5Rg}

6 0
2 years ago
100-ft-long horizontal pipeline transporting benzene develops a leak 43 ft from the high-pressure end. The diameter of the leak
Amanda [17]

Answer:

Explanation:

The mass flow rate of benzene from the leak in the pipeline containing benzene is:

Q_m=AC_o\sqrt{2\rho g_cP_g}

Here, Q_m is the mass flow rate through the leak of the pipeline. A is the area of the hole, C_o is the discharge rate, \rho is the fluid density, g_c is the gravitational constant and P_g is the constant gauge pressure within the process unit.

The diametre of the leak (d) is 0.1 in. Convert from in to ft.

d=(0.1 in)(\frac{1ft}{12in})\\=8.33\times 10^{-3}ft

Calculate the area (A) of the hole. The area of the hole is.

A=\frac{\pi d^2}{4}

Substitute 3.14 for \pi and 8.33\times 10^{-3}ft for d and calculate A.

A=\frac{\pi d^2}{4}\\\\\frac{(3.14)(8.33\times 10^{-3})^2}{4}\\\\5.45\times 10^{-5}ft^2

The specific gravity of benzene is 0.8794. Specific gravity is the ratio of th density of a substance to the density of a reference substance.

Specific gravity of benzene = density of benzenee/denity of reference substance

Rewrite the expression in terms of density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

Take the reference substance as water. Density of water is 62.4\frac{Ib_m}{ft^3}. Calculate density of benzene.

Density of benzene = specific gravity of benzene x density of reference substance

=(0.8794)(62.4\frac{Ib_m}{ft^3})\\\\54.9\frac{Ib_m}{ft^3}

Calculate the pressure at the point of leak. The pressure is the average of the pressure of the high and low pressure end. Write the expression to calculate the average pressure.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

Calculate the distance from the downstream pressure end. The distance from upstream pressure end is 43 ft. Total of the pipe is 100 ft.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

The distance from upstream pressure end is 43 ft. Total length of the pipe is 100 ft. Substitute the values in the equation.

Distance from the downstream pressure end = Total length of the pipe - Distance from the upstream pressure end

= 100ft - 43ft = 57 ft

Substitute 50 psig for upstream, 43 ft fr distance from the upstream pressure end, 40 psig for downstream pressure, 57 ft for distance from the downstream pressure end, and 100 ft for the total length of the horizontal pipeline and calculate P_g.

Upstream x distance from upstream pressure end

P_g=+DOWNSTREAM PRESSURE X DISTANCE FROM THE DOWNSTREAM PRESSURE END/ TOTAL LENGTH OF THE HORIZONTAL PIPELINE

=\frac{(50psig\times 43ft)+(40psig \times 57ft)}{100ft}\\\\=44.3psig

Convert the pressure from psig to Ib_f/ft^2

P_g=(44.3psig)(\frac{1\frac{Ib_f}{ft^2}}{1psig})(144\frac{in^2}{ft^2})\\\\=6,379.2\frac{Ib_f}{ft^2}

The leak is like a sharp orifice. Take the value of the discharge coefficient as 0.61.

Substitute 5.45\times 10^{-5}ft^2 for A. 0.61 for C_o, 54.9\frac{Ib_m}{ft^3} for \rho, 32.17\frac{ft.Ib_m}{Ib_f.s^2} for g_c, and 6,379.2\frac{Ib_f}{ft^2} for P_g and calculate Q_m

Q_m=AC_o\sqrt{2\rho g_cP_g}\\\\=(5.45\times 10^{-5}ft^2)(0.61)\sqrt{2(54.9\frac{Ib_m}{ft^3})(32.17\frac{ft.Ib_m}{Ib_f.s^2})(6,379.2\frac{Ib_f}{ft^2})}\\\\(3.3245\times 10^{-5}ft^2)\sqrt{22,533,031.21\frac{Ib^2_m}{ft^4.s^2}}\\\\=0.158\frac{Ib_m}{s}

The mass flow rate of benzene through the leak in the pipeline is 0.158\frac{Ib_m}{s}

8 0
2 years ago
What is the resistance ofa wire made of a material with resistivity of 3.2 x 10^-8 Ω.m if its length is 2.5 m and its diameter i
Katarina [22]

R = 0.407Ω.

The resistance  R of a particular conductor is related to the resistivity ρ of the material by  the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of ​​the material.

To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.

We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4.  Then:

R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]

R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²

R = 0.407Ω

5 0
2 years ago
A spaceship of mass 8600 kg is returning to Earth with its engine turned off. Consider only the gravitational field of Earth. Le
Katyanochek1 [597]

Answer:

\Delta KE = 4.20\times 10^{13}\ J

Explanation:

given,

mass of spaceship(m) = 8600 Kg

Mass of earth = 5.972 x 10²⁴ Kg

position of movement of space ship

R₁ = 7300 Km

R₂ = 6700 Km

the kinetic energy of the spaceship increases by = ?

Increase in Kinetic energy = decrease in potential energy

    \Delta KE = GMm (\dfrac{1}{R_2}-\dfrac{1}{R_1})

    \Delta KE = GMm (\dfrac{R_1-R_2}{R_2R_1})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{7300 - 6700}{7300 \times 6700})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{600}{48910000})

    \Delta KE = 4.20\times 10^{13}\ J

5 0
2 years ago
Other questions:
  • The rotational speeds of four generators are listed in RPM (revolutions per minute). Arrange the generators in order based on th
    13·2 answers
  • The number that is used to show the value of one currency compared to another is called the __________. A. trade rate B. currenc
    6·1 answer
  • Dr. Matthews has submitted a proposal to the institutional review board (IRB) of a university. At this university, she intends t
    14·1 answer
  • A gymnast practices two dismounts from the high bar on the uneven parallel bars. during one dismount, she swings up off the bar
    5·1 answer
  • Calculate the average velocity in m/y of a tectonic plate that has travelled 9000 km to the south in 60 million years
    14·1 answer
  • A signal generator has an output voltage of 2.0 V with no load. When a 600 Ω load is connected to it, the output drops to 1.0 V.
    15·1 answer
  • A man of mass m 1 5 70.0 kg is skating at v1 5 8.00 m/s behind his wife of mass m 2 5 50.0 kg, who is skating at v2 5 4.00 m/s.
    9·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
  • A student practicing for a cross country meet runs 250 m in 30 s. What is the average speed
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!