Answer:
The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular
Explanation:
The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.
The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.
We are given the following values:
weight w = 240 lb = 1,067.52 N
energy E = 3,000 J
The formula for potential energy is:
E = w h
where h is the height the person has to climb, therefore:
h = 3000 / 1067.52
<span>h = 2.81 m</span>
<span>
</span>
<span>Therefore he has to climb 2.81 meters</span>
To solve this problem it is necessary to apply the concepts related to thermal stress. Said stress is defined as the amount of deformation caused by the change in temperature, based on the parameters of the coefficient of thermal expansion of the material, Young's module and the Area or area of the area.

Where
A = Cross-sectional Area
Y = Young's modulus
= Coefficient of linear expansion for steel
= Temperature Raise
Our values are given as,




Replacing we have,


Therefore the size of the force developing inside the steel rod when its temperature is raised by 37K is 38526.1N
Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
I’ve answered this before so I know the question is missing an
important given and that given is: <span>1 has an
empty trailer and the other has a fully loaded one.
So, it would be the fully loaded trailer that would take a longer distance to
stop because a lot of weight is being pulled, and when the brakes are started,
the fully loaded trailer is more like pushing against the truck.</span>