Answer:
Radius of the solenoid is 0.93 meters.
Explanation:
It is given that,
The magnetic field strength within the solenoid is given by the equation,
, t is time in seconds

The induced electric field outside the solenoid is 1.1 V/m at a distance of 2.0 m from the axis of the solenoid, x = 2 m
The electric field due to changing magnetic field is given by :

x is the distance from the axis of the solenoid
, r is the radius of the solenoid


r = 0.93 meters
So, the radius of the solenoid is 0.93 meters. Hence, this is the required solution.
If the mass of the cylinder increases, the temperature of the water increases, because a greater mass means the cylinder has more potential energy that can be converted to thermal energy, increasing the temperature of the water.
We have energy E = hc/λ, where h is Planck's constant c is speed of light and λ is the wavelength.
So Energy , 
Energy of one mol = 
Energy of one mol of photons generated from this device = 225 kJ
Answer: The reference frame of a passenger in a seat near the center of the train
Explanation:
the speed of light is the same for the passenger and the bicyclist
then the avents are simultaneous fo the passenger not for the bicyclist
the delay between the two events for the bicyclist is
Δt=Δd/vs
where
Δd= lenght of train
vs=speed of sound
the reference frame of a passenger in a seat near the center of the train
Solution:
The space and time transformations are:
x' = γ(x - vt)
t' = γ(t - vx/c²).
In the primed frame the two events are simultaneous, so that Δt' = 0. Also here Δx' = 30. In the unprimed frame Δx' = 30 = γ(Δx - v Δt).......(*)
We also have Δt' = 0 = γ(Δt - vΔx/c²)→Δx = c²Δt/v......(**)
Substituting (**) in (*): 30 = γ(c²Δt/v - vΔt))→Δt = 30/(c²/v - v) =
30/(2c - 0.5c) = 6.7 x 10^(-8)s
Answer: If the gravitacional acceleration is 1/6 of Earth's gravitational acceleration, it means that moon's gravitational acceleration is less than Earth's. Also, if the gravitational acceleration is less than Earth's, the astronaut's weight decreases since we calculate it multiplying his body mass by the gravity in the place given.
On Earth, an astronaut that is 70kg weights 70kg * 9.8 m/s² = 686N
On the Moon, the same astronaut would weight 70kg * 9.8 m/s² * 1/6 = 114,3 N
So, the astronaut’s weight decreases because the moon’s gravitational acceleration is less than Earth’s.