Potential Energy = mass * Hight * acceleration of gravity
PE=hmg
PE = 1.5 * .2 * 9.81
PE = 2.943
it lost .6 so 2.943 - .6 = 2.343
now your new energy is 2.343 so solve for height
2.343 = mhg
2.334 = .2 * h * 9.81
h = 1.194
the ball after the bounce only went up 1.194m
The velocity of Ned as measured by Pam is the interpretation of v.
Answer: Option D
<u>Explanation:</u>
According to question, we know that this is an issue depending on the logical and translation of the factors. From the measured information taken what is gathered by the two people is communicated and we have given as:
The Ned reference framework : (x, t)
The Pam reference framework : 
From the reference framework, we realize that ν is the speed of Pam (the other reference framework) as estimation by Ned.
At that point,
is the speed of Ned (from the other arrangement of the reference) as estimation by Pam.
<span>1.5 minutes per rotation.
The formula for centripetal force is
A = v^2/r
where
A = acceleration
v = velocity
r = radius
So let's substitute the known values and solve for v. So
F = v^2/r
0.98 m/s^2 = v^2/200 m
196 m^2/s^2 = v^2
14 m/s = v
So we need a velocity of 14 m/s. Let's calculate how fast the station needs to spin.
Its circumference is 2*pi*r, so
C = 2 * 3.14159 * 200 m
C = 1256.636 m
And we need a velocity of 14 m/s, so
1256.636 m / 14 m/s = 89.75971429 s
Rounding to 2 significant digits gives us a rotational period of 90 seconds, or 1.5 minutes.</span>
Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer:
It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.
Explanation:
Conduction phenomenon of charging is the process of charging in which two bodies are made in contact with each other so that charges are transferred due to potential difference of two bodies.
here we know that when hands are shake then it will have paint on it. so here due to hand shake the hands are in contact with charge particles and due to contact the electrons are transferred to the hand.
Now here we need to assume that charge of paint must be opposite that of the charge on the hand because only due to opposite charge attraction the paint must be transferred to the hand
SO here correct answer will be
It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.