answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VMariaS [17]
2 years ago
6

In a car crash, large accelerations of the head can lead to severe injuries or even death. A driver can probably survive an acce

leration of 50g that lasts for less than 30 ms, but in a crash with a 50gacceleration lasting longer than 30 ms, a driver is unlikely to survive. Imagine a collision in which a driver's head experienced a 50g accelerationWhat is the highest speed that the car could have had such that the driver survived? Express your answer with the appropriate units.
Physics
1 answer:
noname [10]2 years ago
6 0

Answer:

14.7 m/s

Explanation:

a = acceleration experienced by driver's head = 50 g = 50 x 9.8 m/s² = 490 m/s²

v₀ = initial speed of the driver = 0 m/s

v = final speed of the driver after 30 ms

t = time interval for which the acceleration is experienced = 30 ms = 0.030 s

Using the equation

v = v₀ + a t

Inserting the values

v = 0 + (490) (0.030)

v = 14.7 m/s

You might be interested in
A 9V battery is directly connected to each of 3 LED bulbs. Select the statement that accurately describes this circuit. A) A dir
Likurg_2 [28]
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !
7 0
2 years ago
Read 2 more answers
would an elephant standing on one leg exert a higher force on a scale than an elephant on four legs. why​
zlopas [31]

Answer:

no becaus force is mass multiplied by acceleration. the mass of the elephant does not change

7 0
2 years ago
How are chargeable cells different from ordinary dry cells​
topjm [15]
Ordinary cells can convert chemical energy to electrical energy only, but rechargeable cells can also store electrical energy into chemical energy and vice versa. You will study more about it in your higher classes. secondary cells can be recharged and used again but dry cells cannot be recharged.
6 0
1 year ago
For a group class project, students are building model roller coasters. Each roller coaster needs to begin at the top of the fir
abruzzese [7]

Case A :

A .75 kg 65 N/m 1.2 m

m = mass of car = 0.75 kg

k = spring constant of the spring = 65 N/m

h = height of the hill = 1.2 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (65) (0.25)² + (0.75 x 9.8 x 1.2) = (0.5) (0.75) v²

v = 5.4 m/s



Case B :

B .60 kg 35 N/m .9 m

m = mass of car = 0.60 kg

k = spring constant of the spring = 35 N/m

h = height of the hill = 0.9 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (35) (0.25)² + (0.60 x 9.8 x 0.9) = (0.5) (0.60) v²

v = 4.6 m/s




Case C :

C .55 kg 40 N/m 1.1 m

m = mass of car = 0.55 kg

k = spring constant of the spring = 40 N/m

h = height of the hill = 1.1 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (40) (0.25)² + (0.55 x 9.8 x 1.1) = (0.5) (0.55) v²

v = 5.1 m/s




Case D :

D .84 kg 32 N/m .95 m

m = mass of car = 0.84 kg

k = spring constant of the spring = 32 N/m

h = height of the hill = 0.95 m

x = compression of spring = 0.25 m

Using conservation of energy between Top of hill and Bottom of hill

Total energy at Top of hill = Total energy at Bottom of hill

spring energy + potential energy = kinetic energy

(0.5) k x² + mgh = (0.5) m v²

(0.5) (32) (0.25)² + (0.84 x 9.8 x 0.95) = (0.5) (0.84) v²

v = 4.6 m/s


hence closest is in case C at 5.1 m/s




7 0
2 years ago
Read 2 more answers
A 8.00g sample of substance (substance, molar mass = 152.0 g/mol) was combusted in a bomb calorimeter with a heat capacity of 6.
aleksandrvk [35]

Answer:

ΔH°comb=-5899.5 kJ/mol

Explanation:

First, consider the energy balance:

m_{c} *Cp*(T_{2}-T_{1})=-n_{s} *H_{c} Where m_{c} is the calorimeter mass and n_{s} is the number of moles of the samples; H_{c} is the combustion enthalpy. The energy balance says that the energy that the reaction release is employed in rise the temperature of the calorimeter, which is designed to be adiabatic, so it is suppose that the total energy is employed rising the calorimeter temperature.

The product m_{c} *Cp is the heat capacity, so the balance equation is:

6.21\frac{kJ}{K}*(75-25)=-8.00g*\frac{mol}{152.0g}*H_{c}

So, the enthalpy of combustion can be calculated:

H_{c}=-5899.5\frac{kJ}{mol}

I will be happy to solve any doubt you have.

4 0
2 years ago
Other questions:
  • A cat is sleeping on the floor in the middle of a 3.0-m-wide room when a barking dog enters with a speed of 1.50 m/s. as the dog
    10·1 answer
  • The 12.2-m crane weighs 18 kn and is lifting a 67-kn load. the hoisting cable (tension t1) passes over a pulley at the top of th
    5·1 answer
  • A roller of radius 12.5 cm turns at 14 revolutions per second. What is the linear velocity of the roller in meters per second?
    11·2 answers
  • An overhang hollow shaft carries a 900 mm diameter pulley, whose centre is 250 mm from the centre of the nearest bearing. The we
    10·1 answer
  • A viscous liquid is sheared between two parallel disks of radius �, one of which rotates with angular speed Ω, while the other i
    14·1 answer
  • 3. A 75kg man sits at one end of a uniform seesaw pivoted at its center, and his 24kg son sits at the
    11·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
  • There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
    8·1 answer
  • Lynn rubs a balloon with a piece of wool, which causes the balloon to pick up some of the electric charges from the wool. Lynn t
    10·2 answers
  • An astronaut drops a feather from 1.2 m above
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!