Answer:
F = 10.788 N
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, d = 0.1 m
We know that there is a force between charges. It is called electrostatic force. It is given by :

So, the force applied between charges is 10.788 N.
It would be water because if you freeze it than you will still be able to see it and if you boil it than you will be able to see it disappear.
Answer:
The gravitational potential energy equals the work needed to lift the object.
Explanation:
here we know that

work done is given as

Potential energy is given as

force due to gravity is given as

now here if we plug in the value of distance and force in the formula of work done then we will have

so here we got

so we can concluded that
The gravitational potential energy equals the work needed to lift the object.
Answer:
x = 1,185 m
, t = 4/3 s
, F = - 4 N
Explanation:
For this exercise we use Newton's second law
F = m a = m dv /dt
β - α t = m dv / dt
dv = (β – α t) dt
We integrate
v = β t - ½ α t²
We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t
v-v₀ = β t - ½ α t²
the farthest point of the body is when v = v₀ = 0
0 = β t - ½ α t²
t = 2 β / α
t = 2 4/6
t = 4/3 s
Let's find the distance at this time
v = dx / dt
dx / dt = v₀ + β t - ½ α t2
dx = (v₀ + β t - ½ α t2) dt
We integrate
x = v₀ t + ½ β t - ½ 1/3 α t³
x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³
The body comes out of rest
x = 3.5556 - 2.37
x = 1,185 m
The value of force is
F = β - α t
F = 4 - 6 4/3
F = - 4 N