answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
2 years ago
12

A 50-kg sprinter accelerates from 0 to 11 m/s in 3.0 s. What is the power output for this rapid start?

Physics
1 answer:
Citrus2011 [14]2 years ago
3 0

Answer:

1008.33 W.

Explanation:

Power: This can be defined as the rate at which energy is consumed or dissipated. The S.I unit of power is Watt (W).

P = E/t.......................... Equation 1

Where P = Energy, E = Energy, t = time.

But from the question,

E = 1/2mΔv²................... Equation 2

where m = mass of the sprinter, Δv = change in velocity of the sprinter = final velocity - initial velocity.

Substitute equation 2 into equation 1

P = 1/2mΔv/t....................... Equation 3

Given: m = 50 kg, Δv = 11-0 = 11 m/s, t = 3.0 s.

Substitute into equation  3

P = 1/2(50)(11)²/3

P = 25(121)/3

P = 1008.33 W.

Thus the power output = 1008.33 W.

You might be interested in
In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of frictio
lord [1]

Answer:

i am answering the same question 3rd time

please find the answer in the images attached.

5 0
2 years ago
In the Atwood machine shown below, m1 = 2.00 kg and m2 = 6.05 kg. The masses of the pulley and string are negligible by comparis
Rus_ich [418]
M1 descending
−m1g + T = m1a 

m2 ascending
m2g − T = m2a

this gives :
(m2 − m1)g = (m1 + m2)a 

a = (m2 − m1)g/m1 + m2
   = (5.60 − 2)/(2 + 5.60) x 9.81 
   = = 4.65m/s^2
5 0
2 years ago
A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by
Airida [17]

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

4 0
2 years ago
B. A hydraulic jack has a ram of 20 cm diameter and a plunger of 3 cm diameter. It is used for lifting a weight of 3 tons. Find
lozanna [386]

Answer:

option (b)

Explanation:

According to the Pascal's law

F / A = f / a

Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.

Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm

A = π R^2 = π x 100 cm^2

F = 3 tons = 3000 kgf

diameter of plunger, d = 3 cm, r = 1.5 cm

a = π x 2.25 cm^2

Use Pascal's law

3000 / π x 100 = f / π x 2.25

f = 67.5 Kgf

4 0
2 years ago
The study of alternating electric current requires the solutions of equations of the form i equals Upper I Subscript max Baselin
KiRa [710]

Answer:

Explanation:

i = Imax sin2πft

given i = 180 , Imax = 200 , f = 50  , t = ?

Put the give values in the equation above

180 = 200 sin 2πft

sin 2πft = .9

sin2π x 50t = .9

sin 360 x 50 t = sin ( 360n + 64 )

360 x 50 t = 360n + 64

360 x 50 t =  64 ,  ( putting n = 0 for least value of t )

18000 t = 64

t = 3.55 ms  .

8 0
2 years ago
Other questions:
  • A ladybug starts at the center of a 16.0 in .-diameter turntable and crawls in a straight radial line to the edge. While this is
    10·1 answer
  • Sachi wants to throw a water balloon to knock over a target and win a prize. The target will only fall over if it is hit with a
    8·2 answers
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    15·1 answer
  • A girl is running toward the front of a train at 10 m/s. If the train is going 75 m/s on the Southbound tracks, what is the spee
    6·2 answers
  • While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the
    6·2 answers
  • Through how many volts of potential difference must an electron, initially at rest, be accelerated to achieve a wave length of 0
    13·1 answer
  • A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
    7·1 answer
  • In very cold weather, a significant mechanism for heat loss by the human body is energy expended in warming the air taken into t
    11·1 answer
  • Suppose an isolated box of volume 2V is divided into two equal compartments. An ideal gas occupies half of the container and the
    14·1 answer
  • The fundamental frequency of a resonating pipe is 150 Hz, and the next higher resonant frequencies are 300 Hz and 450 Hz. From t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!