answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
2 years ago
13

1. Describe the methods by which an electric potential develops in primary cells and dry cells.

Physics
1 answer:
Andreyy892 years ago
6 0

Answer:

In primary cells, an electric potential develops through chemical action between the plates within the cell. Positively charged ions of zinc enter the acid and free electrons released from zinc atoms collect on the zinc plate, which results in a negative charge. At the same time, positively charged ions of hydrogen from the acid remove free electrons from the copper plate, which becomes positively charged. Through a conducting material connecting the plates, free electrons move from the zinc plate to the copper plate as long as the chemical reaction lasts.

Dry cells also develop electric potential via chemical actions within the cell. Free electrons removed from the carbon rod collect on a zinc can. The rod exhibits a positive charge and the can becomes negatively charged; this allows for an electric potential to develop between these two items. Through a conducting material connecting the can to the rod, free electrons move from the can to the rod as long as the conducting path exists.

Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.

Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.

a. Increase

b. Decrease

c. Decrease

Since 1 Btu = 0.293 Wh, dividing the given amount of Wh by 0.293 will convert this amount into Btu. Therefore, 0.8 ÷ 0.293 = 2.73 Btu

365 days × 10 hours × 40 W = 146,000 Wh or 146 kWh

Explanation:

Penn Foster

You might be interested in
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
1 year ago
A particular material has an index of refraction of 1.25. What percent of the speed of light in a vacuum is the speed of light i
beks73 [17]

Answer:

80% (Eighty percent)

Explanation:

The material has a refractive index (n) of 1.25

Speed of light in a vacuum (c) is 2.99792458 x 10⁸  m/s

We can find the speed of light in the material (v) using the relationship

n = c/v, similarly

v = c/n

therefore v = 2.99792458 x 10⁸  m/s ÷ (1.25) = 239 833 966 m/s

v = 239 833 966 m/s

Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as

(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%

Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)

3 0
2 years ago
Read 2 more answers
A 94-ft3/s water jet is moving in the positive x-direction at 18 ft/s. The stream hits a stationary splitter, such that half of
vitfil [10]

Answer:

FR<em>x  </em>= 960.37 lbf   (←)

FR<em>z </em>= 0 lbf

Explanation:

Given:

Q = 94 ft³/s

vx = 18 ft/s

ρ = 62.4 lbm/ft³

∅ = 45°

<em>Assumptions: </em>

1. The flow is steady and incompressible.

2 . The water jet is exposed to the atmosphere, and thus the  pressure of the water jet before and after the split is the  atmospheric pressure which is disregarded since it acts on all  surfaces.

3. The gravitational effects are disregarded.

4. The  flow is nearly uniform at all cross sections, and thus the effect  of the momentum-flux correction factor is negligible, β ≅ 1.

<em>Properties:</em> We take the density of water to be ρ = 62.4 lbm/ft³

Analysis: The mass flow rate of water jet is

M = ρ*Q = (62.4 lbm/ft³ )(94 ft³/s) = 5865.6 lbm/s

We take the splitting section of water jet, including the splitter as the control volume, and designate the entrance by 1 and  the outlet of either arm by 2 (both arms have the same velocity and mass flow rate <em>M</em>). We also designate the horizontal  coordinate by x with the direction of flow as being the positive direction and the vertical coordinate by z.

The momentum equation for steady flow is

∑ F = ∑ (β*M*v) <em>out</em> - ∑ (β*M*v) <em>in</em>

We let the x- and y- components of the  anchoring force of the splitter be FR<em>x</em> and FR<em>z,  </em>and assume them to be in the positive directions. Noting that

v₂ = v₁ = v  and  M₂ = (1/2) M, the momentum equations along the x and z axes become

FR<em>x </em>= 2*(1/2) M*v₂*Cos ∅ - M*v₁ = M*v*(Cos ∅ - 1)

FR<em>z </em>= (1/2) M*(v₂*Sin ∅) + (1/2) M*(-v₂*Sin ∅) = 0

Substituting the given values,

FR<em>x </em>= (5865.6 lbm/s)*(18 ft/s)*(Cos (45°) - 1)(1 lbf / 32.2 lbm*ft/s²)

⇒  FR<em>x  </em>= - 960.37 lbf

FR<em>z </em>= 0 lbf

The negative value for FR<em>x</em> indicates the assumed direction is wrong, and should be reversed. Therefore, a force of 960.37 lbf  must be applied to the splitter in the opposite direction to flow to hold it in place. No holding force is necessary in the  vertical direction. This can also be concluded from the symmetry.

In reality, the gravitational effects will cause the upper stream to slow down and the lower stream to speed  up after the split. But for short distances, these effects are negligible.  

3 0
2 years ago
When a pendulum is at the midpoint of its oscillation, hanging straight down, which statement is true?
Svetach [21]
When a pendulum is at the midpoint of its oscillation, hanging straight down ...

-- that's the fastest it's going to swing, so its kinetic energy is maximum;
and
-- that's the lowest it's going to get, so its potential energy is minimum.

'c' is your choice.
5 0
2 years ago
Read 2 more answers
You are exploring a planet and drop a small rock from the edge of a cliff. In coordinates where the +y direction is downward and
Lelu [443]

Answer:

value of the acceleration of gravity on the planet is 5.00 m/s²

Explanation:

The problem is similar to a free fall exercise, with another gravity value, the expression they give us is the following:

       y-yo = ½ gₐ t²       (1)

They tell us that they make a squared time graph with the variation of the distance, it is appropriate to clarify this in a method to linearize a curve, which is plotted the nonlinear axis to the power that is raised, specifically, the linearization of a curve The square is plotted against the other variable.

  Let's continue our analysis, as we have a linear equation, write the equation of the line.

     

        y1 = m x1 + b       (2)

where  “y1” the dependent variable, “x1” the independent variable, “m” the slope and “b” the short point

In this case as the stone is released its initial velocity is zero which implies that b = 0,

We plot on the “y” axis the time squared “t²” and on the horizontal axis we place “y-yo”.  To better see the relationship we rewrite equation 1 with this form

        t² = 2 /gₐ  (y-yo)

 

With the two expressions written in the same way, let's relate the terms one by one

        y1 = t²

        x1 = (y-yo)

        m = 2/gap

        b= 0

We substitute and calculate

        m = 2/gp

        gₐ = 2/m

        gₐ = 2/ 0.400

        gₐ = 5.00 m / s²

This is the value of the acceleration of gravity on the planet, note that the decimals are to keep the figures significant

6 0
2 years ago
Other questions:
  • The theory of plate tectonics describes this process as a gradual movement of the tectonic plates across the Earth’s lithosphere
    5·2 answers
  • A 145-g baseball is thrown so that it acquires a speed of 25 m/s. What was the net work done on the ball to make it reach this s
    10·1 answer
  • A 248-g piece of copper is dropped into 390 mL of water at 22.6 °C. The final temperature of the water was measured as 39.9 °C.
    10·1 answer
  • A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
    11·1 answer
  • Which of the following quantities provide enough information to calculate the tension in a string of mass per unit length μ that
    13·1 answer
  • When the voltage and current have _____ polarities in a pure capacitive circuit, the capacitor is discharging and the energy is
    9·1 answer
  • The last page of a book is numbered 764. The book is 3.0 cm thick, not including its covers. What is the average thickness (in c
    8·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
    12·1 answer
  • Two large non-conducting plates of surface area A = 0.25 m 2 carry equal but opposite charges What is the energy density of the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!