Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.
Answer:
B
Explanation:
The capacitor is a component which has the ability to store energy in the form of an electrical charge making a potential difference on those two metal plates
A capacitor consists of two or more parallel conductive (metal) plates. They are electrically seperated by an insulating material (ex: air, mica,ceramic etc.) which is called as Dielectric Layer
Due to this insulating layer, DC current can not flow through the capacitor.But it allows a voltage to be present across the plates in the form of an electrical charge.
Answer:
Explanation:
Let L be the length of the wire.
velocity of pulse wave v = L / 24.7 x 10⁻³ = 40.48 L m /s
mass per unit length of the wire m = 14.5 x 10⁻⁶ x 10⁻³ / 2 x 10⁻² kg / m
m = 7.25 x 10⁻⁷ kg / m
Tension in the wire = Mg , M is mass hanged from lower end.
= .4 x 9.8
= 3.92 N
expression for velocity of wave in the wire
, T is tension in the wire , m is mass per unit length of wire .
40.48 L = 
1638.63 L² = 3.92 / (7.25 x 10⁻⁷)
L² = 3.92 x 10⁷ / (7.25 x 1638.63 )
L² = 3299.64
L = 57.44 m /s
Velocity = frequency * wavelength
v = fλ, Just pick any points on the graph for frequency f and corresponding λ. Taking the first red point at the top. λ = 6m, f = 1 Hz, v = 6 * 1, v = 6 m/s
V = 6 M/S