Answer:
Explanation:
Potential due to a charged metallic sphere having charge Q and radius r on its surface will be
v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre potential is
v = k Q / R
a ) On the surface of the shell , potential due to positive charge is
V₁ = 
On the surface of the shell , potential due to negative charge is
V₁ = 
Total potential will be zero . they will cancel each other.
b ) On the surface of the sphere potential
= 
= 22.5 x 10⁵ V
On the surface of the sphere potential due to outer shell
= 
= -9 x 10⁵
Total potential
=( 22.5 - 9 ) x 10⁵
= 13.5 x 10⁵ V
c ) In the space between the two , potential will depend upon the distance of the point from the common centre .
d ) Inside the sphere , potential will be same as that on the surface that is
13.5 x 10⁵ V.
e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.
Answer:
The objects must have the same acceleration and the objects must exert the same magnitude force on each other.
Explanation:
The objects must have the same weight: FALSE. This is not needed, any two object can move together in contact no matter their mass.
The objects must have the same acceleration: TRUE. If they have different accelerations, they will separate since the distance each of them travel at a given time will be different.
The objects must have the same net force acting on them: FALSE. This is not needed, since what matters is acceleration, and a=F/m, so if both objects have different net force acting on them, they could have different masses also to compensate and result in the same acceleration.
The objects must exert the same magnitude force on each other: TRUE, this is the 3rd Newton Law, an action must follow the same reaction.
Answer:
option C
Explanation:
given,
energy dissipated by the system to the surrounding = 12 J
Work done on the system = 28 J
change in internal energy of the system
Δ U = Q - W
system losses energy = - 12 J
work done = -28 J
Δ U = Q - W
Δ U = -12 -(-28)
Δ U = 16 J
hence, the correct answer is option C
The brick, even though the brick would end up traveling faster, it most likely has a larger surface area therefore it would have more air resistance.