answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
2 years ago
5

Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,

235U, 238U, 40K, or 14C? There may be more than one answer that is appropriate. Explain your reasoning for why the remaining scenario(s) would be inappropriate/impossible to use that particular isotope. Answers should include a discussion on usable ages for each system and whether the necessary isotopes would be found in the material to be dated.
a. A meteorite that formed early in the formation of the solar system.

b. A rock formed through a mountain building event around 420 million years ago.

c. Volcanic ash from an eruption 60 million years ago.

d. An earthquake scarp that formed along the San Andreas Fault 50 years ago.

e. An Incan archaeological dig site in the highlands of Peru.

f. A tree from a forest in England that is suspected to be the oldest in the British Isles.
Physics
1 answer:
REY [17]2 years ago
8 0

Answer:

a) 238U, 40K and 87Rb, b)   235U and to a lesser extent 40K , c)  he 235U,

d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful

Explanation:

One of the applications of radioactive decay is the dating of different systems.

To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.

Let's write the half-life times of the given materials

87Rb T ½ = 4.75 1010 years

147Sm T ½ = 1.06 1011 years

235U = 7,038 108 years

238U = 4.47 109 years

40K = 1,248 109 years

14C = 5,568 103 years

we already have the half-life of the different elements given

a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate

b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed

c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent

d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed

e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed

f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed

You might be interested in
A 450g mass on a spring is oscillating at 1.2Hz. The totalenergy of the oscillation is 0.51J. What is the amplitude.
Volgvan

Answer:

A=0.199

Explanation:

We are given that  

Mass of spring=m=450 g==\frac{450}{1000}=0.45 kg

Where 1 kg=1000 g

Frequency of oscillation=\nu=1.2Hz

Total energy of the oscillation=0.51 J

We have to find the amplitude of oscillations.

Energy of oscillator=E=\frac{1}{2}m\omega^2A^2

Where \omega=2\pi\nu=Angular frequency

A=Amplitude

\pi=\frac{22}{7}

Using the formula

0.51=\frac{1}{2}\times 0.45(2\times \frac{22}{7}\times 1.2)^2A^2

A^2=\frac{2\times 0.51}{0.45\times (2\times \frac{22}{7}\times 1.2)^2}=0.0398

A=\sqrt{0.0398}=0.199

Hence, the amplitude of oscillation=A=0.199

4 0
2 years ago
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
1 year ago
Read 2 more answers
A ball is thrown with a velocity of 35 meters per second at an angle of 30° above the horizontal. which quantity has a magnitude
enot [183]
The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is the vertical velocity.

In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity v_x=v_0 cos 30^{\circ}, where v_0=35 m/s
- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2 directed downwards, and with initial velocity v_y=v_= sin 30^{\circ}. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height. 
5 0
1 year ago
would an elephant standing on one leg exert a higher force on a scale than an elephant on four legs. why​
zlopas [31]

Answer:

no becaus force is mass multiplied by acceleration. the mass of the elephant does not change

7 0
2 years ago
If a 10 meter ramp helps you move a 500 kg object up 1 meter. What was the mechanical advantage of the ramp?
sattari [20]
The mechanical advantage of an inclined plane is

(Length of the incline) / (its height)

= (10m) / (1m)

= 10 .

It's the same for any load, and doesn't depend on the mass that you're trying to move up or down the ramp.
6 0
2 years ago
Other questions:
  • The first man-made satellite, Sputnik 1, was launched into space in 1957. This satellite was used to study the conditions found
    10·2 answers
  • Find the time t1 it takes to accelerate the flywheel to ω1 if the angular acceleration is α. express your answer in terms of ω1
    14·2 answers
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m, rotating at a rate of 9 revolutions/minu
    9·1 answer
  • Two children, Ahmed and Jacques, ride on a merry-go-round. Ahmed is at a greater distance from the axis of rotation than Jacques
    13·1 answer
  • A physics student shoves a 0.50-kg block from the bottom of a frictionless 30.0° inclined plane. The student performs 4.0 j of w
    8·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • What is the first velocity of the car with four washers at
    5·2 answers
  • A rod 16.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electri
    9·1 answer
  • A parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates. A 1.0 g plastic bead, with a charg
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!