You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight
Explanation:
It is given that,
Mass of the ball, m = 1 lb
Length of the string, l = r = 2 ft
Speed of motion, v = 10 ft/s
(a) The net tension in the string when the ball is at the top of the circle is given by :



F = 18 N
(b) The net tension in the string when the ball is at the bottom of the circle is given by :



F = 82 N
(c) Let h is the height where the ball at certain time from the top. So,


Since, 

Hence, this is the required solution.
C) electrical energy is transformed into heat energy
Answer:
the average velocity of car A between t1 and t2greater is greater than the average velocity of B berween t1 and t2
Explanation:
Velocity is displacement over time,
Displacement is the distance covered relative to the initial starting position
For A:
at time ti, A moved from Xo to 2Xo, displacement is 2Xo.
at time t2 a moves with speed 3V, hence, his new position will be 3Xo from 2Xo which will be at 5Xo. A's displacement is 5Xo from starting point.
For B:
at time ti, B moved from Xo to 2Xo, displacement is 2Xo.
at time t2 a moves with speed V in the opposite position so he'll be back to his starting point, hence, his new position will be at Xo. A's displacement is 0 from his starting point.
Lindsay has to fly this plane towards this direction [W 12.5° S] to get to Hamilton.
From this question, the plane is still up in the air.
We have wind blowing in [W 60° N ]
To solve the problem we have to make use of the sine rule

We put the values in the equation, we have:
50/Sinθ = 200/sin60°
The next step is to cross multiply
50 x sin60° = 200Sinθ
50 x 0.8660 = 200sinθ
We make Sin θ the subject
Sine θ = 43.30/200
sine θ = 0.2165
we find the value of θ
θ = sine⁻¹(0.2165)
θ = 12.50
So Lindsay has to fly this plane towards this direction
[W 12.5° S]
Here is a similar question brainly.com/question/13338067?referrer=searchResults