answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
2 years ago
7

Another term for electromotive force is _____. voltage current resistance power

Physics
1 answer:
Ray Of Light [21]2 years ago
3 0
Voltage because I said so
You might be interested in
What visible signs indicate a precipitation reaction when two solutions are mixed?
Illusion [34]

Formation of an insoluble solid

Explanation:

One of the remarkable visible signs that indicates a precipitation reaction when two solutions are mixed is the formation of an insoluble solid. The insoluble solid formed is the precipitate.

  • Precipitates usually forms in single replacement reactions and double replacement or double decomposition reactions.
  • They form when two soluble compounds react. One of the product is an insoluble solid in the solution called the precipitate.
  • The solubility table helps to predict whether precipitates forms in a reaction.

Learn more:

precipitate brainly.com/question/8896163

#learnwithBrainly

6 0
2 years ago
What are physical forms in which a substance can exist?
Alecsey [184]
Physical forms are: gas,liquid,and solid
8 0
2 years ago
Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
Ber [7]

Answer:

(A.) (- 4.33, 6.33 , 0); (B.) (- 3.66, 7.5, 0); (C.) average at (A) (- 4.33, 6.33 , 0) ; (D.) (- 0.2165, 0.3165, 0)

Explanation:

Given the following :

Time - - - - - - - 6.6s - - - - - - - - - 6.9s - - - - - 7.2s

Position - (1.8,5.0,0) - (0.5,6.9,0) - - (−0.4,9.5,0)

(a) Between 6.6 s and 6.9 s, what was the bee's average velocity?

Vavg = Distance / time

[(0.5,6.9,0) - (1.8,5.0,0)] / 6.9 - 6.6

Vavg = [(0.5 - 1.8), (6.9 - 5.0), (0 - 0)] / 0.3

Vavg = - 1.3 / 0.3, 1.9/0.3, 0/3

Vavg = (- 4.33, 6.33 , 0)

b) Between 6.6 s and 7.2 s, what was the bee's average velocity?

Vavg = [(−0.4,9.5,0) - (1.8,5.0,0)] / 7.2 - 6.6

Vavg = - 2. 2/0.6, 4.5/0.6, 0/0.6

Vavg = (- 3.66, 7.5, 0)

c.) Of the two averages (- 4.3, 6.3 , 0) is closer to the instantaneous Velocity at 6.6s

D.) (d) Using the best information available, what was the displacement of the bee during the time interval from 6.6 s to 6.65 s?

Displacement = Velocity * time

Vavg between 6.6 to 6.9 ; time = (6.65 - 6.6) = 0.05 s

= (- 4.33, 6.33 , 0) * 0.05

= (- 0.2165, 0.3165, 0)

5 0
2 years ago
A shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0 ∘above the horizontal. Th
alina1380 [7]

A) Zero

The motion of the shot is a projectile's motion: this means that there is only one force acting on the projectile, which is gravity. However, gravity only acts in the vertical direction: so, there are no forces acting in the horizontal direction. Therefore, the x-component of the acceleration is zero.

B) -9.8 m/s^2

The vertical acceleration is given by the only force acting in the vertical direction, which is gravity:

F=mg

where m is the projectile's mass and g is the gravitational acceleration. Therefore, the y-component of the shot's acceleration is equal to the acceleration due to gravity:

a_y = g = -9.8 m/s^2

where the negative sign means it points downward.

C) 7.6 m/s

The x-component of the shot's velocity is given by:

v_x = v_0 cos \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_x = (12.0 m/s)(cos 51^{\circ})=7.6 m/s

D) 9.3 m/s

The y-component of the shot's velocity is given by:

v_y = v_0 sin \theta

where

v_0 = 12.0 m/s is the initial velocity

\theta=51.0^{\circ} is the angle of the shot

Substituting into the equation, we find

v_y = (12.0 m/s)(sin 51^{\circ})=9.3 m/s

E) 7.6 m/s

We said at point A) that the acceleration along the x-direction is zero: therefore, the velocity along the x-direction does not change, so the x-component of the velocity at the end of the trajectory is equal to the x-velocity at the beginning:

v_x = 7.6 m/s

F) -11.1 m/s

The y-component of the velocity at time t is given by:

v_y(t) = v_y + at

where

v_y = 9.3 m/s is the initial y-velocity

a = g = -9.8 m/s^2 is the vertical acceleration

t is the time

Since the total time of the motion is t=2.08 s, we can substitute this value into the equation, and we find:

v_y(2.08 s)=9.3 m/s + (-9.8 m/s^2)(2.08 s)=-11.1 m/s

where the negative sign means the vertical velocity is now downward.

3 0
2 years ago
Joanna has become good friends with Janna, whose name begins with the same letter as hers. They sit next to each other in three
solmaris [256]
Proximity -------------------- APEX
5 0
2 years ago
Read 2 more answers
Other questions:
  • A 2.0kg solid disk rolls without slipping on a horizontal surface so that its center proceeds to the right with a speed of 5.0 m
    11·1 answer
  • A flying mosquito hits the windshield of a moving car and gets smashed, but the car is intact. Which of the following statements
    14·1 answer
  • A car weighs 14500 N. What is the mass?
    11·2 answers
  • Our two intrepid relacar drivers are named Pam and Ned. We use these names to make it easy to remember: measurements made by Pam
    5·1 answer
  • Two billiard balls of equal mass move at right angles and meet at the origin of an xy coordinate system. Initially ball A is mov
    15·1 answer
  • During metamorphism, what is the major effect of chemically active fluids?
    7·1 answer
  • Water (cp = 4180 J/kg·K) is to be heated by solar-heated hot air (cp = 1010 J/kg·K) in a double-pipe counter-flow heat exchanger
    15·1 answer
  • A new planet is discovered beyond Pluto at a mean distance to the sun of 4004 million miles. Using Kepler's third law, determine
    7·1 answer
  • roblem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can be described by the following p
    9·1 answer
  • In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!