Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer:
Neutrons
Explanation:
Neutrons are subatomic particles that are electrically neutral and possess no charge in them.
Answer:
The tension in the rope is 281.60 N.
Explanation:
Given that,
Length = 3.0 m
Weight = 600 N
Distance = 1.0 m
Angle = 60°
Consider half of the ladder,
let tension be T, normal reaction force at ground be F, vertical reaction at top hinge be Y and horizontal reaction force be X.
....(I)
.....(II)
On taking moment about base

Put the value into the formula


....(III)
We need to calculate the force for ladder


We need to calculate the tension in the rope
From equation (3)




Hence, The tension in the rope is 281.60 N.
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
As we know that speed of package is same as that of helicopter in horizontal direction
So after time "t" the velocity in x direction will remain constant while in Y direction it will go free fall
So we have



Part b)
Distance from helicopter is same as the distance of free fall
so we will have

Part c)
If helicopter is rising upwards with uniform speed
then final speed of the package after time t is given as


Part d)
distance from helicopter

Answer:
E=0
Explanation:
Electric field due to each thin sheet of charge=\sigma/2\varepsilon
let us say the right plate has positive charge density \varepsilonand left sheet has a negative charge density -\varepsilon .
In the region between the plates,the electric field due to each plate is in same direction,
E=\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=\sigma/\varepsilon
in the region outside the plates, the field due to the plates is in opposite directions
E=-\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=-\sigma/2\varepsilon+\sigma/2\varepsilon
E=0