Answer:
a) λ = 189.43 10⁻⁹ m b) λ = 269.19 10⁻⁹ m
Explanation:
The diffraction network is described by the expression
d sin θ= m λ
Where m corresponds to the diffraction order
Let's use trigonometry to find the breast
tan θ = y / L
The diffraction spectrum is measured at very small angles, therefore
tan θ = sin θ / cos θ = sin θ
We replace
d y / L = m λ
Let's place in the first order m = 1
Let's look for the separation of the lines (d)
d = λ L / y
d = 501 10⁻⁹ 9.95 10⁻² / 15 10⁻²
d = 332.33 10⁻⁹ m
Now we can look for the wavelength of the other line
λ = d y / L
λ = 332.33 10⁻⁹ 8.55 10⁻²/15 10⁻²
λ = 189.43 10⁻⁹ m
Part B
The compound wavelength B
λ = 332.33 10⁻⁹ 12.15 10⁻² / 15 10⁻²
λ = 269.19 10⁻⁹ m
Answer:
Electric field, 
Explanation:
It is given that,
Magnitude of charge, 
Force experienced, 
We need to find the electric field at the origin. It is given by :




So, the electric field at the origin is
. Hence, this is the required solution.
we are given in the problem the following dimensions or specifications
B = 0.000055 T r = 0.25 m constant mu0 = 4*pi*10-7
The formula that is applicable from physics is
B = mu0*I/(2*pi*r) I = 2*B*pi*r/mu0 I = 68.75 Amperes
Answer:
The plate's surface charge density is 
Explanation:
Given that,
Speed = 9800 km/s
Distance d= 75 cm
Distance d' =15 cm
Suppose we determine the plate's surface charge density?
We need to calculate the surface charge density
Using work energy theorem


Here, final velocity is zero
...(I)
We know that,


...(II)
From equation (I) and (II)

Charge is negative for electron

Put the value into the formula


Hence, The plate's surface charge density is 
Answer:
C
Explanation:
To solve this question, we will need to develop an expression that relates the diameter 'd', at temperature T equals the original diameter d₀ (at 0 degrees) plus the change in diameter from the temperature increase ( ΔT = T):
d = d₀ + d₀αT
for the sphere, we were given
D₀ = 4.000 cm
α = 1.1 x 10⁻⁵/degrees celsius
we have D = 4 + (4x(1.1 x 10⁻⁵)T = 4 + (4.4x10⁻⁵)T EQN 1
Similarly for the Aluminium ring we have
we were given
d₀ = 3.994 cm
α = 2.4 x 10⁻⁵/degrees celsius
we have d = 3.994 + (3.994x(2.4 x 10⁻⁵)T = 3.994 + (9.58x10⁻⁵)T EQN 2
Since @ the temperature T at which the sphere fall through the ring, d=D
Eqn 1 = Eqn 2
4 + (4.4x10⁻⁵)T =3.994 + (9.58x10⁻⁵)T, collect like terms
0.006=5.18x10⁻⁵T
T=115.7K