answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lorasvet [3.4K]
2 years ago
6

While Bob is demonstrating the gravitational force on falling objects to his class, he drops an 1.0 lb bag of feathers from the

top of the science building. Determine the distance the bag has traveled after falling for 1.5 seconds assuming it has reach free fall and given the gravitational acceleration of 9.8 m/sec2.
A) 7.4 m
B) 11 m
C) 15 m
D) 22 m
Physics
2 answers:
asambeis [7]2 years ago
4 0

The answer here is A) 7.4 m.

____ [38]2 years ago
3 0

As per the question Bob drops the bag full with feathers from the top of the building.

The mass of the bag(m)= 1.0 lb

Let the air resistance is neglected.As the bag is under free fall ,hence the only force that acts on the bag is the force of gravity which is in vertical downward direction.

Here the acceleration produced on bag due to the free fall will be nothing else except the acceleration due to gravity i.e g =9.8 m/s^2


Here we are asked to calculate the distance travelled by the bag at the instant 1.5 s

Hence time t= 1.5 s

From equation of kinematics we know that -

                S=ut + 0.5at^2     [ here S is the distance travelled]

For motion under free fall initial velocity (u)=0.

Hence   S= 0×1.5+{0.5×(-9.8)×(1.5)^2}

           ⇒ -S =0-11.025 m

            ⇒ S= 11.025 m

                   =11 m

Here the negative sign is taken only due to the vertical downward motion of the body .we may take is positive depending on our frame of reference .


Hence the correct option is B.

               

You might be interested in
A fan is to accelerate quiescent air to a velocity of 12.5 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
Reika [66]

Answer:

= 829.69 Watt

≅ 830 Watt

Explanation:

Given that,

Velocity of air flow = 12.5m/s

Rate of flow of air = 9m³/s

Density of air = 1.18kg/m³

power by kinetic energy = 1/2(mv²)

mass = density × volume

m = 1.18 × 9

  = 10.62 kg/s

power = 1/2 mV²

           = 1/2 (10.62 × 12.5²)

           = 829.69 Watt

           ≅ 830 Watt

Flow rate  

u

=

9

 

m

3

/

s

Velocity of the air  

V

=

8

 

m/s

Density of the air  

ρ

=

1.18

 

kg

/

m

3

5 0
2 years ago
Rotational dynamics about a fixed axis: A person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface
FrozenT [24]

Answer:

I = 2 kgm^2

Explanation:

In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:

\tau=I\alpha     (1)

I: moment of inertia of the door

α: angular acceleration of the door = 2.00 rad/s^2

τ: torque exerted on the door

You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:

\tau=Fd        (2)

F: force = 5.00 N

d: distance to the hinges = 0.800 m

You replace the equation (2) into the equation (1), and you solve for α:

Fd=I\alpha\\\\I=\frac{Fd}{\alpha}

Finally, you replace the values of all parameters in the previous equation for I:

I=\frac{(5.00N)(0.800m)}{2.00rad/s^2}=2kgm^2

The moment of inertia of the door around the hinges is 2 kgm^2

3 0
2 years ago
You are exploring a distant planet. When your spaceship is in a circular orbit at a distance of 630 km above the planet's surfac
NemiM [27]

Answer:

The horizontal range of the projectile = 26.63 meters

Explanation:

Step 1: Data given

Distance above the planet's surface = 630 km = 630000

The ship's orbal speed = 4900 m/s

Radius of the planet = 4.48 *10^6 m

Initial speed of the projectile = 13.6 m/s

Angle = 30.8 °

Step 2: Calculate g

g= GM /R² = (v²*(R+h)) /(R²)

⇒ with v= the ship's orbal speed = 4900 m/S

⇒ with R = the radius of the planet = 4.48 *10^6 m

⇒ with h = the distance above the planet's surface = 630000 meter

g = (4900² * ( 4.48*10^6+ 630000)) / ((4.48*10^6)²)

g = 6.11 m/s²

<u>Step 3:</u> Describe the position of the projectile

Horizontal component: x(t) = v0*t *cos∅

Vertical component: y(t) = v0*t *sin∅ -1/2 gt² ( will be reduced to 0 in time )

⇒ with ∅ = 30.8 °

⇒ with v0 = 13.6 m/s

⇒ with t= v(sin∅)/g = 1.14 s

Horizontal range d = v0²/g *2sin∅cos∅  = v0²/g * sin2∅

Horizontal range d =(13.6²)/6.11 * sin(2*30.8)

Horizontal range d =26.63 m

The horizontal range of the projectile = 26.63 meters

6 0
2 years ago
There is an electromagnetic wave traveling in the -z direction in a standard right-handed coordinate system. What is the directi
wlad13 [49]

Answer: The direction of the electric field, E→, is pointed in the +y direction.

Explanation:

One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.

The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field  B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.

6 0
2 years ago
A cork floats on the surface of an incompressible liquid in acontainer exposed to atmospheric pressure. The container is thensea
e-lub [12.9K]

Answer:

The cork:

C) floats at the same height

Explanation:

The law of floatation states that an object will float when it displaces its own weight of fluid in which it floats e.g. the weight of the object is equal to the displaced liquid. With this definition it is clear that the cork will float at the same height because the evacuated air has little or no effect on the cork floating on the surface of the incompressible liquid.

5 0
2 years ago
Other questions:
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • The population in the United States in 2015 was 321 million people. It is projected to increase to 438 million people by the yea
    11·2 answers
  • A 15.0-gram lead ball at 25.0°C was heated with 40.5 joules of heat. Given the specific heat of lead is 0.128 J/g∙°C, what is th
    8·1 answer
  • A car enters a 300-m radius horizontal curve on a rainy day when the coefficient of static friction between its tires and the ro
    7·1 answer
  • A 65 kg person jumps from a window to a fire net 18 m below, which stretches the net 1.1 m. Assume the net behaves as a simple s
    11·1 answer
  • A nonrelativistic electron is accelerated from rest through a potential difference. After acceleration the electron has a de Bro
    14·1 answer
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    7·1 answer
  • A bicyclist is riding at a tangential speed of 13.2 m/s around a circular track. The magnitude of the centripetal force is 377 N
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!