Answer:
Answer; v= 1.2654m/s
T= 110.76N
Explanation:
Apply Momentum Principle
Fdtro - Mgridt = Iow +Mvr
Fdtro - Mgridt = mK2 v/r1 + Mvr1
85 x 3x 0.345 -11 x 9.81 x 0.23 x 3 =30 x 0.25 x 0.25 x v/0.23 + 11 x v x 0.23 =
v = 1.2654m/s
To find the timed average value
Tdt -Mgdt =MV
T x 3 - 11 x 9.81 x 3 = 11 x 0.778
T= 110.76N
A person lifting a chair is converting chemical energy to mechanical energy.
Answer:
Technician A is right. The situation will happens even with only two bulbs in series
Explanation:
We must take into account that
1.- All electric device need its nominal voltage to operate
2.-Any and all electric device means an electric load for the source in terms of equation that means any device will implies a drop voltage of V = I*R ( I the flows current and R the resistance of the device)
3.-Nominal voltage for bulbs are specify for houses voltages you find between fase and neutral wires for instance in Venezuela 120 (v).
4.-In a imaginary circuit of only one bulb, the nominal voltage will be applied and the bulb will operates correctly, but when you add another bulb (in series) the nominal voltage will split between the two bulbs ( we could find a situation such as the first bulb work properly but the second one does not). The voltage split according to Ohms law (in such way that the sum of voltage between the terminal of the first bulb plus the voltage at terminals of the second one are equal to nominal voltage.
For that reason all the bulbs are connected in parallel in wich case all of them will operate with the common voltage
That prediction is not correct because Xenon is extremely stable; column 18 of the periodic table contains the noble gasses, which are stable because their outer-most energy levels are completely filled. Having the octet (8) of valence electrons means that the element no longer needs to lose or gain electrons to gain stability.
The column 17 elements are unstable because they only have one valence electron short of the stable octet configuration of the noble gasses.
To solve this problem it is necessary to apply the concepts related to the magnetic dipole moment in terms of the current and the surface area, as well as the current density, as a function of the current over the area.
Part A) By definition we know that magnetic dipole moment is

Where,
I = Current
S = Area

Replacing with our values we have that,

Re-arrange to find I,

Part B) To find the Current density we need to find the cross sectional area of the Wire:

Finally the current density is simply J

PART C) Finally to make the comparison with the given values we have to cross-sectional area would be

Therefore the current density would be

Comparing the two values we can see that the 2mm wire has a higher current density.