Centripetal force <span>a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving. It is calculated by the expression:
F = mv^2/r
where m is the mass, v is the velocity and r is the radius.
F = 7.26(31.95)^2 / (1.215) = 6100 N</span>
<span><span>Use the periodic table and your knowledge of isotopes to complete these statements.
When polonium-210 emits an alpha particle, the child isotope has an atomic mass of </span><span> ⇒ 206</span>.</span>
<span><span>I-131 undergoes beta-minus decay. The chemical symbol for the new element is </span><span> ⇒ Xe</span>.</span>
<span><span>Fluorine-18 undergoes beta-plus decay. The child isotope has an atomic mass of </span><span> ⇒ 18</span>.</span>
The bear fell because it slides to the surface of ice due to lack of friction.
One of these theories is that friction<span> causes the liquid layer of water to form on </span>ice<span>. </span>Friction<span> is the force that generates heat whenever two objects slide against each other. If you rub your hands together, you can feel them heat up. That's </span>friction<span> at work. When a </span>skate<span> moves over the surface of </span>ice, the friction<span> between the </span>skate<span> and the </span>ice<span> generates heat that melts the </span>outermost<span> layer of </span>ice<span>.</span>
Answer:
The time constant and its uncertainty is t ± Δt = 0.526 ± 0.057 s
Explanation:
If we make a comparison we have to:
y = A*(1-e^-(C*x)) + B
If the time remains constant we have to:
t = R*C = 1/C
In this way we calculate the time constant and its uncertainty. this will be equal to:
t ± Δt = (1/1.901) ± (0.2051/1.901)*(1/1.901) = 0.526 ± 0.057 s
Answer: a) 95.07m b) 81.88 m
Explanation:
a)
For finding the distance when vehicle is going downhill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 95.07 m
b)
For finding the distance when vehicle is going uphill we have the formula as:
Stop sight distance= Velocity*Reaction time + Velocity² / 2*g*(f constant- Grade value)
Now by AASHTO, we have for v= 45 mph= 72.4 kph, f= 0.31
Reaction time= 0.28
So putting values we get
Stop sight distance= 0.28*72.4 *1 + 
Stop sight distance= 81.88 m