Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Answer:
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Explanation:
Acceleration is the change in velocity per unit time
a = ∆v/t
Given;
∆v = 50.0miles/hour - 0
∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour
∆v = 22.352m/s
t = 2.22 s
So,
Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.