answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
1 year ago
7

Aaron Agin nodded off while driving home from play practice this past Sunday evening. His 1500-kg car hit a series of guardrails

while moving at 19.8 m/s. The first guard rail delivered a resistive impulse of 5700 N•s. The second guard rail pushed against his car with a force of 79000 N for 0.12 seconds. The third guard rail collision lowered the car's velocity by 3.2 m/s. Determine the final velocity of the car.
Physics
1 answer:
Inessa [10]1 year ago
5 0

Answer: 6.48m/s

Explanation:

First, we know that Impulse = change in momentum

Initial velocity, u = 19.8m/s

Let,

Velocity after first collision = x m/s

Velocity after second collision = y m/s

Also, we know that

Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).

5700 = 1500(19.8 - x)

5700 = 29700 - 1500x

1500x = 29700 - 5700

1500x = 24000

x = 24000/1500

x = 16m/s

Also, at the second guard rail. impulse = ft, so that

Impulse = 79000 * 0.12

Impulse = 9480

This makes us have

Impulse = m(x - y)

9480 = 1500(16 -y)

9480 = 24000 - 1500y

1500y = 24000 - 9480

1500y = 14520

y = 14520 / 1500

y = 9.68

Then, the velocity decreases by 3.2, so that the final velocity of the car is

9.68 - 3.2 = 6.48m/s

You might be interested in
A source charge generates an electric field of 4286 N/C at a distance of 2.5 m. What is the magnitude of the source charge?
mrs_skeptik [129]
The Answer is 3.0uc. I took the quiz.
8 0
2 years ago
Read 2 more answers
Max and Jimmy want to jump on a trampoline. Max begins jumping in a steady pattern, making small waves in the trampoline. Jimmy
mylen [45]

Answer:

x_total = (A + B) cos (wt + Ф)

we have the sum of the two waves in a phase movement

Explanation:

In this case we can see that the first boy Max when he enters the trampoline and jumps creates a harmonic movement, with a given frequency. When the second boy Jimmy enters the trampoline and begins to jump he also creates a harmonic movement. If the frequency of the two movements is the same and they are in phase we have a resonant process, where the amplitude of the movement increases significantly.

         Max

               x₁ = A cos (wt + Ф)

         Jimmy

              x₂ = B cos (wt + Ф)

         

total movement

             x_total = (A + B) cos (wt + Ф)

 Therefore we have the sum of the two waves in a phase movement

8 0
1 year ago
Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
Oliga [24]

Answer:

Current, I = 1000 A

Explanation:

It is given that,

Length of the copper wire, l = 7300 m

Resistance of copper line, R = 10 ohms

Magnetic field, B = 0.1 T

\mu_o=4\pi \times 10^{-7}\ T-m/A

Resistivity, \rho=1.72\times 10^{-8}\ \Omega-m

We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :

R=\rho \dfrac{l}{A}

R=\rho \dfrac{l}{\pi r^2}

r=\sqrt{\dfrac{\rho l}{R\pi}}

r=\sqrt{\dfrac{1.72\times 10^{-8}\times 7300}{10\pi}}

r = 0.00199 m

or

r=1.99\times 10^{-3}\ m=2\times 10^{-3}\ m

The magnetic field on a current carrying wire is given by :

B=\dfrac{\mu_o I}{2\pi r}

I=\dfrac{2\pi rB}{\mu_o}

I=\dfrac{2\pi \times 0.1\times 2\times 10^{-3}}{4\pi \times 10^{-7}}

I = 1000 A

So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.

4 0
1 year ago
Consider an object with s=12cm that produces an image with s′=15cm. Note that whenever you are working with a physical object, t
Leni [432]

A. 6.67 cm

The focal length of the lens can be found by using the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}

where we have

f = focal length

s = 12 cm is the distance of the object from the lens

s' = 15 cm is the distance of the image from the lens

Solving the equation for f, we find

\frac{1}{f}=\frac{1}{12 cm}+\frac{1}{15 cm}=0.15 cm^{-1}\\f=\frac{1}{0.15 cm^{-1}}=6.67 cm

B. Converging

According to sign convention for lenses, we have:

- Converging (convex) lenses have focal length with positive sign

- Diverging (concave) lenses have focal length with negative sign

In this case, the focal length of the lens is positive, so the lens is a converging lens.

C. -1.25

The magnification of the lens is given by

M=-\frac{s'}{s}

where

s' = 15 cm is the distance of the image from the lens

s = 12 cm is the distance of the object from the lens

Substituting into the equation, we find

M=-\frac{15 cm}{12 cm}=-1.25

D. Real and inverted

The magnification equation can be also rewritten as

M=\frac{y'}{y}

where

y' is the size of the image

y is the size of the object

Re-arranging it, we have

y'=My

Since in this case M is negative, it means that y' has opposite sign compared to y: this means that the image is inverted.

Also, the sign of s' tells us if the image is real of virtual. In fact:

- s' is positive: image is real

- s' is negative: image is virtual

In this case, s' is positive, so the image is real.

E. Virtual

In this case, the magnification is 5/9, so we have

M=\frac{5}{9}=-\frac{s'}{s}

which can be rewritten as

s'=-M s = -\frac{5}{9}s

which means that s' has opposite sign than s: therefore, the image is virtual.

F. 12.0 cm

From the magnification equation, we can write

s'=-Ms

and then we can substitute it into the lens equation:

\frac{1}{f}=\frac{1}{s}+\frac{1}{s'}\\\frac{1}{f}=\frac{1}{s}+\frac{1}{-Ms}

and we can solve for s:

\frac{1}{f}=\frac{M-1}{Ms}\\f=\frac{Ms}{M-1}\\s=\frac{f(M-1)}{M}=\frac{(-15 cm)(\frac{5}{9}-1}{\frac{5}{9}}=12.0 cm

G. -6.67 cm

Now the image distance can be directly found by using again the magnification equation:

s'=-Ms=-\frac{5}{9}(12.0 cm)=-6.67 cm

And the sign of s' (negative) also tells us that the image is virtual.

H. -24.0 cm

In this case, the image is twice as tall as the object, so the magnification is

M = 2

and the distance of the image from the lens is

s' = -24 cm

The problem is asking us for the image distance: however, this is already given by the problem,

s' = -24 cm

so, this is the answer. And the fact that its sign is negative tells us that the image is virtual.

3 0
2 years ago
When the wind kicks up dust and sand, the dust grains are charged. The small grains tend to get a negative charge, and the large
diamong [38]

Answer:

Explanation:

Small grains are negatively charged by the wind while big grains is positively charged and remains at the ground . This process creates an electric field due to the presence of oppositely charged particles.

When ever electric field exists it is directed from a positive charge to a negative charge so the here electric field is towards an upwards direction.                  

4 0
2 years ago
Other questions:
  • Which statement correctly describes magnetism?
    15·2 answers
  • What is the average acceleration of a car that is initially at rest at a stoplight and then accelerates to 24 m/s in 9.4 s?
    15·2 answers
  • Two children, Ahmed and Jacques, ride on a merry-go-round. Ahmed is at a greater distance from the axis of rotation than Jacques
    13·1 answer
  • Suzy drops a rock from the roof of her house. Mary sees the rock pass her 2.9 m tall window in 0.134 sec. From how high above th
    7·1 answer
  • Rod AB is held in place by the cord AC. Knowing that the tension in the cord is 1350 N and that c 5 360 mm, determine the moment
    11·1 answer
  • To measure the coefficient of kinetic friction by sliding a block down an inclined plane the block must be in equilibrium.
    15·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • 4. A ball of clay, of mass m, traveling at speed vo, collides and sticks to a stationary stick. The ball approaches the stick in
    13·2 answers
  • A proposed space elevator would consist of a cable stretching from the earth's surface to a satellite, orbiting far in space, th
    13·1 answer
  • Adam observed properties of four different waves and recorded observations about the frequency and volume of each one in his cha
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!