answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dangina [55]
2 years ago
7

An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v

elocity of 20 m/s at the end of this time. Determine the acceleration of the object during this motion.
Physics
1 answer:
Aneli [31]2 years ago
5 0

We are given: Final velocity (v_f)=20 m/s .

Time t= 2.51 s and

distance s = 82.9 m.

We know, equation of motion

v_f = v_i + at.

Let us plug values of final velocity, and time in above equation.

20=v_i+a(2.51)

20=v_i+2.51a

Subtracting 2.51a from both sides, we get

20-2.51a=v_i  -----------equation(1)

Using another equation of motion

v_f-v_i=2as

Plugging values of vi =20-2.51a, t=2.51 and distnace s=82.9 in this equation.

We get,

20-(20-2.51a)=2*a(82.90)

Now, we need to solve it for a.

20-20+2.51a=165.8a.

-163.29a=0

a=0.

So, the acceleration would be 0 m/s^2.


You might be interested in
Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
g100num [7]

Answer:

Explanation:

Center of mass is give as

Xcm = (Σmi•xi) / M

Where i= 1,2,3,4.....

M = m1+m2+m3 +....

x is the position of the mass (x, y)

Now,

Given that,

u1 = (−1, 0, 2) (mass 3 kg),

m1 = 3kg and it position x1 = (-1,0,2)

u2 = (2, 1, −3) (mass 1 kg),

m2 = 1kg and it position x2 = (2,1,-3)

u3 = (0, 4, 3) (mass 2 kg),

m3 = 2kg and it position x3 = (0,4,3)

u4 = (5, 2, 0) (mass 5 kg)

m4 = 5kg and it position x4 = (5,2,0)

Now, applying center of mass formula

Xcm = (Σmi•xi) / M

Xcm = (m1•x1+m2•x2+m3•x3+m4•x4) / (m1+m2+m3+m4)

Xcm = [3(-1, 0, 2) +1(2, 1, -3)+2(0, 4, 3)+ 5(5, 2, 0)]/(3 + 1 + 2 + 5)

Xcm = [(-3, 0, 6)+(2, 1, -3)+(0, 8, 6)+(25, 10, 0)] / 11

Xcm = (-3+2+0+25, 0+1+8+10, 6-3+6+0) / 11

Xcm = (24, 19, 9) / 11

Xcm = (2.2, 1.7, 0.8) m

This is the required center of mass

6 0
2 years ago
When you are standing on Earth, orbiting the Sun, and looking at a broken cell phone on the ground, there are gravitational pull
Mandarinka [93]

Answer:

The answer is "Option b, c, and a".

Explanation:

Here that the earth pulls on the phone, as it will accelerate towards Earth when we drop it.

We now understand the effects of gravity:

F \propto  M\\\\F\propto  \frac{1}{r^2}\\\\or\\\\F \propto  \frac{M}{r^2}\\\\Sun (\frac{M}{r^2}) = \frac{10^{28}}{(10^9)^2} = 10^{10}

The force of the sun is, therefore, 10^{10} times greater and the proper sequence, therefore, option steps are:

b. Pull-on phone from earth

c. Pull-on phone from sun

a. Pull phone from you

5 0
2 years ago
A car drives around a racetrack for 30 seconds. what do you need to know to calculate the average velocity of the car?
boyakko [2]
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
8 0
2 years ago
Read 2 more answers
2.0 kg of solid gold (Au) at an initial temperature of 1000K is allowed to exchange heat with 1.5 kg of liquid gold at an initia
Elanso [62]

Answer:

Explanation:

The specific heat of gold is 129 J/kgC

It's melting point is 1336 K

It's Heat of fusion is 63000 J/kg

Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,

The first is E1 = 63000 J/kg x 1.5 = 94500 J

the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J

Therefore, all solid is not correct. You will have a mixture of solid and liquid.

For more detail, the difference between E1 and E2 is 7812 J, and that will melt

7812/63000 = 0.124 kg of the solid gold

8 0
2 years ago
Describe the energy transformations that take place when a skier starts skiing down a hill but after a time is brought to rest b
Andrews [41]
<span>The skier will transform their gravitational energy into mostly kinetic energy (with a minor amount transformed into heat from the friction of the skis across the snow and air friction). Once the skier hits the snowdrift, their kinetic energy is transferred into the snow which moves when they strike it due to the kinetic energy that is now in the snow. Along with again a minor amount of heat energy transferred as they move through the snowdrift.</span>
6 0
2 years ago
Other questions:
  • What is a limitation of the electron cloud model theory that a law about electrons would not have?
    11·2 answers
  • When driving in heavy rain, or on a flooded road, your tires can ride on a thin film of water like skis;
    10·1 answer
  • What factors might affect how the watermill works?
    14·2 answers
  • Serena is a research student who has conducted an experiment on the discoloration of marble. Read about Serena’s experiment. The
    9·1 answer
  • A body A of mass 1.5kg, travelling along the positive x-axis with speed 4.5m/s, collides with another body B of mass 3.2kg which
    14·1 answer
  • A pitcher exerts a force on a baseball that is 30 times the balls weight. How fast is the pitcher accelerating the ball?
    7·1 answer
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • As in the video, we apply a charge +Q to the half-shell that carries the electroscope. This time, we also apply a charge –Q to t
    10·2 answers
  • An automatic coffee maker uses a resistive heating element to boil the 2.4 kg of water that was poured into it at 21 °C. The cur
    15·1 answer
  • An ideal spring is mounted horizontally, with its left end fixed. The force constant of the spring is 170 N/m. A glider of mass
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!