answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sashaice [31]
2 years ago
7

You and your brother argue often about how to safely secure a toddler in a moving car. You insist that special toddler seats are

critical in improving the chances of a toddler surviving a crash. Your brother claims that, as long as his wife is buckled in next to him with a seat belt while he drives, she can hold onto their toddler on her lap in a crash. You decide to perform a calculation to try to convince your brother. Consider a hypothetical collision in which the 13 kg toddler and his parents are riding in a car traveling at 37 mi/h relative to the ground. The car strikes a wall, tree, or another car, and is brought to rest in 0.14 as. You wish to demonstrate to your brother the magnitude of the force necessary for his wife to hold onto their child during the collision. What is the magnitude of this force (in N)
Physics
1 answer:
sergey [27]2 years ago
5 0

Answer:

Force F = 1535.86 N

the force necessary for his wife to hold onto their child during the collision is 1535.86 N

Explanation:

Given;

Mass of toddler m = 13 kg

Velocity v = 37 mi/h = 37 × 0.44704 m/s = 16.54 m/s

Impulse time t = 0.14 seconds

Using the impulse momentum equation,

Impulse = change in momentum

Ft = m(∆v)

Force F = m(∆v)/t

∆v = 16.54 m/s

F = 13×16.54/0.14

Force F = 1535.86 N

You might be interested in
A 1.0-c point charge is 15 m from a second point charge, and the electric force on one of them due to the other is 1.0 n. what i
Fofino [41]
The answer is 25nC !!! 

4 0
2 years ago
Two long conducting cylindrical shells are coaxial and have radii of 20 mm and 80 mm. The electric potential of the inner conduc
xxMikexx [17]

Answer: 14.52*10^6 m/s

Explanation: In order to explain this problem we have to consider the energy conservation for the electron within the coaxial cylidrical wire.

the change in potential energy for the electron; e*ΔV is  equal to energy kinetic gained for the electron so:

e*ΔV=1/2*m*v^2  v^=(2*e*ΔV/m)^1/2= (2*1.6*10^-19*600/9.1*10^-31)^1/2=14.52 *10^6 m/s

3 0
2 years ago
A construction worker accidentally drops a brick from a high scaffold. a. What is the brick's velocity after 4.0 s? b. How far d
AlekseyPX

Answer:

A. 39.2 m/s

B. 78.4 m

Explanation:

Data obtained from the question include:

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

A. Determination of the brick's velocity.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Velocity (v) =?

v = gt

v = 4 × 9.8

v = 39.2 m/s

Thus, the brick's velocity after 4 s is 39.2 m/s

B. Determination of how far the brick fall in 4 s.

Time (t) = 4 s

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) =?

h = ½gt²

h = ½ × 9.8 × 4²

h = 4.9 × 16

h = 78.4 m

Thus, the brick fall 78.4 m during the time.

5 0
1 year ago
In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
Alexxandr [17]

Answer:

a) a = g / 3

b) x (3.0) = 14.7 m

c) m (3.0) = 29.4 g

Explanation:

Given:-

- The following differential equation for (x) the distance a rain drop has fallen has the form:

                             x*g = x * \frac{dv}{dt} + v^2

- Where,                v = Speed of the raindrop

- Proposed solution to given ODE:

                             v = a*t

Where,                  a = acceleration of raindrop

Find:-

(a) Using the proposed solution for v find the acceleration a.

(b) Find the distance the raindrop has fallen in t = 3.00 s.

(c) Given that k = 2.00 g/m, find the mass of the raindrop at t = 3.00 s.

Solution:-

- We know that acceleration (a) is the first derivative of velocity (v):

                             a = dv / dt   ... Eq 1

- Similarly, we know that velocity (v) is the first derivative of displacement (x):

                            v = dx / dt  , v = a*t ... proposed solution (Eq 2)

                             v .dt = dx = a*t . dt

- integrate both sides:

                             ∫a*t . dt = ∫dt

                             x = 0.5*a*t^2  ... Eq 3

- Substitute Eq1 , 2 , 3 into the given ODE:

                            0.5*a*t^2*g = 0.5*a^2 t^2 + a^2 t^2

                                                = 1.5 a^2 t^2

                            a = g / 3

- Using the acceleration of raindrop (a) and t = 3.00 second and plug into Eq 3:

                           x (t) = 0.5*a*t^2

                           x (t = 3.0) = 0.5*9.81*3^2 / 3

                           x (3.0) = 14.7 m  

- Using the relation of mass given, and k = 2.00 g/m, determine the mass of raindrop at time t = 3.0 s:

                           m (t) = k*x (t)

                           m (3.0) = 2.00*x(3.0)

                           m (3.0) = 2.00*14.7

                           m (3.0) = 29.4 g

6 0
2 years ago
Lauren wants to know which location in her apartment is best for growing African violets. She has three African violets. She put
Harrizon [31]
First, before determining which variable is which, we go over the definition of each.
The independent variable is the one which is intentionally changed in order to investigate its effect on the dependent variable.
The dependent variable is monitored and changes occur in it due to the changing conditions of the independent variable.

In this case, the location of the African violets is the independent variable as it is intentionally changed, while the rate of growth of the African violets is the dependent variable as it is being measured.
5 0
1 year ago
Other questions:
  • Tripling the displacement from equilibrium of an object in simple harmonic motion will change the magnitude of the object’s maxi
    9·1 answer
  • Bonnie and clyde are sliding a 300 kg bank safe across the floor to their getaway car. the safe slides with a constant speed if
    14·1 answer
  • A typical human contains 5.00 l of blood, and it takes 1.00 min for all of it to pass through the heart when the person is resti
    14·2 answers
  • A tennis ball is dropped from 1.20 m above the ground. It rebounds to a height of 1.00 m. (a) with what velocity does it hit the
    7·1 answer
  • Through how many volts of potential difference must an electron, initially at rest, be accelerated to achieve a wave length of 0
    13·1 answer
  • A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
    9·1 answer
  • A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that
    11·2 answers
  • If the soccer player runs with a speed of 4.6m/s, how long does it take him to run 60m?
    15·2 answers
  • A rocket lifts a payload upward from the surface of Earth. The radius of Earth is R, and the weight of the payload on the surfac
    10·1 answer
  • A student measured the density of Galena to be 7.9g/cm3 however the known density of Galena is 7.6g/cm3 . Calculate the percent
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!