Answer:
specific purpose statement
Explanation:
It is a specific purpose statement made for a persuasive speech on the question of fact.
A specific purpose statement helps to build on the general purpose (that is to inform) and to make it more specific to the audience. So if the first speech is an informative speech, our general purpose is to inform our audience about a very specific realm of knowledge.
A specific purpose statement is given to audience to persuade on specific information.
Answer:
Explanation:
total weight acting downwards
= 3g + 10g
13 g
volume of lead = 10 / 11.3 = .885 cm³
Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber = v x 1 x g
Buoyant force on lead = .885 x 1 x g
total buoyant force = vg + .885 g
For floating
vg + .885 g = 13 g
v = 12.115 cm³
total volume of bobber
= 4/3 x 3.14 x 2³
= 33.5 cm³
fraction of volume submerged
= 12.115 / 33.5
= .36
= 36 %
Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.
Answer:
The magnitudes of the net magnetic fields at points A and B is 2.66 x
T
Explanation:
Given information :
The current of each wires, I = 4.7 A
dH = 0.19 m
dV = 0.41 m
The magnetic of straight-current wire :
B= μ
I/2πr
where
B = magnetic field (T)
μ
= 1.26 x
(N/
)
I = Current (A)
r = radius (m)
the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,
BH = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.19)
= 4.96 x
T
BV = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.41)
= 2.3 x
T
hence,
the net magnetic field = BH - BV
= 4.96 x
- 2.3 x 
= 2.66 x
T
The crate only moves horizontally, so its net vertical force is 0. The only forces acting in the vertical direction are the crate's weight (pointing downward) and the normal force of the surface on the crate (pointing upward). By Newton's second law, we have
∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0 → <em>n</em> = <em>mg</em> = 1876 N
where <em>n</em> is the magnitude of the normal force.
In the horizontal direction, the crate is moving at a constant speed and thus with no acceleration, so it's completely in equilibrium and the net horizontal force is also 0. The only forces acting on it in this direction are the 747 N push (pointing in the direction of the crate's motion) and the kinetic friction opposing it (pointing in the opposite direction). By Newton's second law,
∑ <em>F</em> (horizontal) = 747 N - <em>f</em> = 0 → <em>f</em> = 747 N
The frictional force is proportional to the normal force by a factor of the coefficient of kinetic friction, <em>µ</em>, such that
<em>f</em> = <em>µn</em> → <em>µ</em> = <em>f</em> / <em>n</em> = (747 N) / (1876 N) ≈ 0.398188 ≈ 0.40