Answer:
The answer is B) 3 seconds
Explanation:
I just took the test on 2020 edge and got it right
Answer:
A. False
B. False
C. True
D. True
E. True
F. True
Explanation:
A. The equation Ax=b is referred to as a matrix equation and not vector equation.
B. If the augmented matrix [ A b ] has a pivot position in every row then equation Ax=b may or may not be consistent. It is inconsistent if [A b] has a pivot in the last column b and it is consistent if the matrix A has a pivot in every row.
C. In the product of Ax also called the dot product the first entry is a sum of products. For example the the product of Ax where A has [a11 a12 a13] in the first entry of each column and the corresponding entries in x are [x1 x2 x3] then the first entry in the product is the sum of products i.e. a11x1 + a12x2 +a13x3
D. If the columns of mxn matrix A span R^m, this states that every possible vector b in R^m is a linear combination of the columns which makes the equation consistent. So the equation Ax=b has at least one solution for each b in R^m.
E. It is stated that a vector equation x1a1 + x2a2 + x3a3 + ... + xnan = b has the same solution set as that of the linear system with augmented matrix [a1 a2 ... an b]. So the solution set of linear system whose augmented matrix is [a1 a2 a3 b] is the same as solution set of Ax=b if A=[a1 a2 a3] and b can be produced by linear combination of a1 a2 a3 iff the solution of linear system corresponding to [a1 a2 a3 b] takes place.
F. It is true because lets say b is a vector in R^m which is not in the span of the columns. b cannot be obtained for some x which belongs to R^m as b = Ax. So Ax=b is inconsistent for some b in R^m and has no solution.
The angular velocity of the orbit about the sun is:
w = 1 rev / year = 1 rev / 3.15 × 10^7 s
Now in 1 rev there is 360° or 2π rad, therefore:
w = 2π rad / 3.15 × 10^7 s
To convert in linear velocity, multiply the rad /s by the
radius:
v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles
<span>v = 18.55 miles / s = 29.85 km / s</span>
Answer:
The correct answer is option 'd': The frequency decreases and the intensity of the sound decreases.
Explanation:
1) <u>Effect on Frequency </u>
According to Doppler's effect of sound we have
for a source of sound moving away from the observer the relation between the observed and the original frequency is given by

where
c = speed of sound in air
is the velocity of observer of sound
is the velocity of source of sound
is the original frequency of sound
As we see the ratio is less than 1 thus the frequency of sound that the observer receives is less than that of source.
2) <u>Effect on Intensity:</u>
At a distance 'r' from source emitting a wave of Power 'P' is given by

As we see on increasing 'r' intensity of sound decreases.