Answer:
Part A. The magnitude of the normal force is equal to the magnitude of the weight of the suitcase minus the magnitude of the force of the pull.
Part B. The magnitude of normal force acting on the suitcase is equal to the sum of the weight of the suitcase and the man.
Explanation:
Part A. This is because when the man pulls on the suit upwards, he exerts a force in the upward direction. This takes part of the force of weight of the suitcase and decreases the force the suitcase is exerting on the ground. Thus, the normal force (force exerted by suitcase on the ground) also decreases by the same force as the pull.
Part B. The statements for this part were not given in the question, but the answer reflects what is going to happen in that scenario. Since the man sits on the suitcase, the total weight acting on the ground through the suitcase is that of the suitcase plus the man. Since this force (acting on the ground) is normal force, the statement given in the answer is correct.
Answer:
The total charge on the rod is 47.8 nC.
Explanation:
Given that,
Charge = 5.0 nC
Length of glass rod= 10 cm
Force = 840 μN
Distance = 4.0 cm
The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector
We need to calculate the electric field
Using formula of electric field intensity

Where, Q = charge on the rod
The force is on the charged bead of charge q placed in the electric field of field strength E
Using formula of force

Put the value into the formula

We need to calculate the total charge on the rod

Put the value into the formula



Hence, The total charge on the rod is 47.8 nC.
Answer:
The ball reaches Barney head in 
Explanation:
From the question we are told that
The rise velocity is 
The height considered is 
The horizontal velocity of the large object is 
Generally from kinematic equation

Here s is the distance of the object from Barney head ,
u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter
So

So

= 
Solving the above equation using quadratic formula
The value of t obtained is 
Answer:
8.02×10⁵ m
Explanation:
Equation for centripetal force:
F = mv²/r
Solving for r:
r = mv²/F
Given:
F = 8955 N
m = 1160 kg
v = 7446 m/s
r = (1160 kg) (7446 m/s)² / 8955 N
r = 7.182×10⁶ m
The height above the surface is:
h = 7.182×10⁶ m − 6.38×10⁶ m
h = 0.802×10⁶ m
h = 8.02×10⁵ m
Answer:
1. The tension in the rope is everywhere the same.
2. The magnitudes of the forces exerted on the two objects by the rope are the same.
3. The forces exerted on the two objects by the rope must be in opposite directions.
Explanation:
"Massless ropes" do not have a<em> "net force"</em> which means that it is able to transmit the force from one end of the rope to the other end, perfectly. It is known for its property of having a total force of zero. In order to attain this property, the magnitude of the forces exerted on the two stationary objects by the rope are the same and in opposite direction. <u>So this explains number 2 & 3 answers.</u>
Since the objects that are held by the rope are stationary, then this means that the tension in the rope is also stationary. This means that the tension in the rope everywhere is the same (provided that the rope is still or in a straight line, as stated in the situation above, and is being held by two points). <u>So, this explains number 1.</u>