answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
2 years ago
10

A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0

cmcm from the rod's center. The bead is repelled from the rod with a force of 840 μNμN.What is the total charge on the rod?
Physics
1 answer:
GuDViN [60]2 years ago
6 0

Answer:

The total charge on the rod is 47.8 nC.

Explanation:

Given that,

Charge = 5.0 nC

Length of glass rod= 10 cm

Force = 840 μN

Distance = 4.0 cm

The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector

We need to calculate the electric field

Using formula of electric field intensity

E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

Where, Q = charge on the rod

The force is on the charged bead of charge q placed in the electric field of field strength E

Using formula of force

F=qE

Put the value into the formula

F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

We need to calculate the total charge on the rod

Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}

Put the value into the formula

Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}

Q=47.8\times10^{-9}\ C

Q=47.8\ nC

Hence, The total charge on the rod is 47.8 nC.

You might be interested in
Slick Willy is in traffic court (again) contesting a $50.00 ticket for running a red light. "You see, your Honor, as I was appro
Masteriza [31]

Answer:

61578948 m/s

Explanation:

λ_{actual} = λ_{observed} \frac{c+v_{o}}{c}

687 = 570 (\frac{3 * 10^{8} +v_{o} }{3 * 10^{8}} )

v_{o} = 61578948 m/s

So Slick Willy was travelling at a speed of 61578948 m/s to observe this.

8 0
2 years ago
Read 2 more answers
A ball with a mass of 0.5 kilograms is lifted to a height of 2.0 meters and dropped. It bounces back to a height of 1.8 meters.
Degger [83]
Hi, thank you for posting your question here at Brainly.

To compute for the change in potential energy, the equation would be:

delta PE =  mg*delta h
delta PE = 0.5*9.81*(2-1.8)
delta Pe = 0.98 J

The potential energy is converted to kinetic energy.
3 0
2 years ago
Read 2 more answers
A runner runs around the track consisting of two parallel lines 96 m long connected at the ends by two semi circles with a radiu
Zielflug [23.3K]
-0 m/s
- average velocity=displacement/time
- the runners displacement is zero so her average velocity must be zero
7 0
2 years ago
In order to get a tree stump out of the ground, chains are connected to two trucks. One truck pulls with a force of 600 N to the
Black_prince [1.1K]

Answer:

The net force on the stump is 1000 N.

Explanation:

Given that,

Force 1 acting on the truck, F_1=600\ N (due north)

Force 2 acting on the truck, F_2=800\ N (due west)

We need to find the net force on the stump. We know that force is a vector quantity. The net force on the stump is given by the the resultant force. It is given by :

F=\sqrt{F_1^2+F_2^2}

F=\sqrt{600^2+800^2}

F = 1000 N

So, the net force on the stump is 1000 N. Hence, this is the required solution.

3 0
2 years ago
A seaplane flies horizontally over the ocean at 50 meters/second. It releases a buoy, which lands after 21 seconds. What's the v
pantera1 [17]
The motion of the buoy consists of two independent motions on the horizontal and vertical axis.

On the horizontal axis, the motion of the buoy is a uniform motion with constant speed v=50 m/s. On the vertical axis, the motion of the buoy is a uniformly accelerated motion with constant acceleration g=9.81 m/s^2. The vertical position of the buoy at time t is given by
y(t)=h- \frac{1}{2}gt^2
where h is the initial heigth of the buoy when it is released from the plane. At the time t=21 s, the buoy reaches the ground, so y(21 s)=0. If we substitute these two numbers inside the equation, we can find the value of h, the vertical displacement from the plane to the ocean:
0=h- \frac{1}{2}gt^2
h= \frac{1}{2}gt^2= \frac{1}{2}(9.81 m/s^2)(21 s)^2=2163 m
8 0
2 years ago
Other questions:
  • Iron(II) carbonate (FeCO3) has a solubility product constant of 3.13 x 10-11 . Calculate the molar solubility of FeCO3 in water
    11·1 answer
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • Consider a box sitting in the back of a pickup. The pickup accelerates to the right, and because the bed of the pickup is sticky
    8·2 answers
  • Determine which type of property each statement describes by typing “physical” or “chemical” in the blank. Hydrogen is a colorle
    7·2 answers
  • When a craton is exposed at earth's surface, it is called a ________. when a craton is exposed at earth's surface, it is called
    14·1 answer
  • Which is the BEST example of refraction?
    13·2 answers
  • A skateboarder is attempting to make a circular arc of radius r = 16 m in a parking lot. The total mass of the skateboard and sk
    10·1 answer
  • A wrench is placed at 30 cm in front of a diverging lens with a focal length of magnitude 10 cm. What is the magnification of th
    13·1 answer
  • Some plants disperse their seeds when the fruit splits and contracts, propelling the seeds through the air. The trajectory of th
    9·1 answer
  • 1. The mass of the Earth is 81 times the mass of the Moon. Using Newton's Law of Gravity, what would the effect of gravitation b
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!