When air is blown into the open pipe,
L = 
where nis any integral number 1,2,3,4 etc. and λ is the wavelength of the oscillation
⇒λ=
Note here that n=1 is for fundamental, n=2 is first harmonic and so on..
⇒ third harmonic will be n=4
Given L=6m, n=4, solving for λ we get:
λ=
=3m
Relationship of frequency(f), velocity of sound (c) and wavelength(λ) is:
c=f.λ Or f= 
⇒f=
≈115 Hz
r = radius of the circle of the ride = 3.00 meters
v = linear speed of the person during the ride = 17.0 m/s
m = mass of the person in angular motion in the ride
L = angular momentum of the person in the ride = 3570 kg m²/s
Angular momentum is given as
L = m v r
inserting the values
3570 kg m²/s = m (17 m/s) (3.00 m)
m = 3570 kg m²/s/(51 m²/s)
m = 7 kg
hence the mass comes out to be 7 kg
First, torque is equal to force times the distance. for the first force that is applied, the torque is zero because is applied at the hinge. so the net torque:
t = ( 12 N ) ( 0 m ) ( cos 30 ) + ( 12 N ) ( 1.68 m ) cos 45
t = 14.26 Nm is the torque with respect to the hinge
Answer:5.17 m/s
Explanation:
Given
let u be the speed at cliff initial point
range over cliff is 1.45 m
and range of projectile is given by


u=3.77 m/s
Conserving Energy

Kinetic energy=Kinetic energy +Potential energy gained
Let v be the initial velocity




