answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
2 years ago
11

In the demolition of an old building, a 1,300 kg wrecking ball hits the building at 1.07 m/s2. Calculate the amount of force at

which the wrecking ball strikes the building. The wrecking ball strikes the building with a force of N.
Physics
1 answer:
Y_Kistochka [10]2 years ago
3 0

Answer: F = 1391 N

Explanation:

The information given to you are:

Mass M = 1300 kg

Acceleration a = 1.07 m/s^2

The magnitude of the force striking the building will be

F = ma

Where

F = force

Substitute mass M and acceleration a into the formula

F = 1300 × 1.07

F = 1391 N

Therefore, the wrecking ball strikes the building with a force of 1391 N

You might be interested in
if a toaster transfers 100 joules of energy every ten seconds, what is the power rating of the toaster include the units in your
Mila [183]

Answer:

that is the solution to the question

8 0
2 years ago
Read 2 more answers
A car accelerates uniformly from rest to a speed of 6.6 m/s in 6.5 s. Find the distance the car travels during this time.
andrew11 [14]
It traveled 39.6 meters
6 0
2 years ago
Read 2 more answers
During the class prize-giving ceremony, Anand clapped his hands hard while Kumar clapped his hands softly. Everybody could hear
algol13

Answer:

C - higher volume

Explanation:

The pitch or frequency of sound that an object can produce depends upon its size and configuration . The shape of hand of all are same so the frequency of sound produced by hands of all will be almost same . Hence frequency of sound produced by the hands of Anand and Kumar would have been almost the same .

But the intensity of sound produced by them would have been different . Intensity represents energy a sound carries . Hard hitting clap will produce sound of higher intensity . Intensity of sound is also called high volume sound . So Kumar's clap will carry greater energy and hence greater volume of sound .

3 0
2 years ago
A small glass bead charged to 5.0 nCnC is in the plane that bisects a thin, uniformly charged, 10-cmcm-long glass rod and is 4.0
GuDViN [60]

Answer:

The total charge on the rod is 47.8 nC.

Explanation:

Given that,

Charge = 5.0 nC

Length of glass rod= 10 cm

Force = 840 μN

Distance = 4.0 cm

The electric field intensity due to a uniformly charged rod of length L at a distance x on its perpendicular bisector

We need to calculate the electric field

Using formula of electric field intensity

E=\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

Where, Q = charge on the rod

The force is on the charged bead of charge q placed in the electric field of field strength E

Using formula of force

F=qE

Put the value into the formula

F=q\times\dfrac{kQ}{x\sqrt{(\dfrac{L}{2})^2+x^2}}

We need to calculate the total charge on the rod

Q=\dfrac{Fx\sqrt{(\dfrac{L}{2})^2+x^2}}{kq}

Put the value into the formula

Q=\dfrac{840\times10^{-6}\times4.0\times10^{-2}\sqrt{(\dfrac{10.0\times10^{-2}}{2})^2+(4.0\times10^{-2})^2}}{9\times10^{9}\times5.0\times10^{-9}}

Q=47.8\times10^{-9}\ C

Q=47.8\ nC

Hence, The total charge on the rod is 47.8 nC.

6 0
2 years ago
A tennis player hits a ball 2.0 m above the ground. The ball leaves his racquet with a speed of 20 m/s at an angle 5.0 ∘ above t
ipn [44]

Answer:

ball clears the net

Explanation:

v_{o} = initial speed of launch of the ball = 20 ms^{-1}

\theta = angle of launch = 5 deg

Consider the motion of the ball along the horizontal direction

v_{ox} = initial velocity = v_{o} Cos\theta = 20 Cos5 = 19.92 ms^{-1}

t = time of travel

X = horizontal displacement of the ball to reach the net = 7 m

Since there is no acceleration along the horizontal direction, we have

X = v_{ox} t \\7 = v_{ox} t\\t = \frac{7}{v_{ox}}       Eq-1

Consider the motion of the ball along the vertical direction

v_{oy} = initial velocity = v_{o} Sin\theta = 20 Sin5 = 1.74 ms^{-1}

t = time of travel

Y_{o} = Initial position of the ball at the time of launch = 2 m

Y = Final position of the ball at time "t"

a_{y} = acceleration in down direction = - 9.8 ms⁻²

Along the vertical direction , position at any time is given as

Y = Y_{o} + v_{oy} t + (0.5) a_{y} t^{2}\\Y = 2 + (20 Sin5) (\frac{7}{20 Cos5}) + (0.5) (- 9.8) (\frac{7}{20 Cos5})^{2}\\Y = 2.00758 m\\

Since Y > 1 m

hence the ball clears the net

7 0
2 years ago
Other questions:
  • Buffalo, New York, experienced a snowstorm November 13–21, 2014. Residents refer to the event as “Snowvember.” What was the like
    10·2 answers
  • What factors might affect how the watermill works?
    14·2 answers
  • Serena is a research student who has conducted an experiment on the discoloration of marble. Read about Serena’s experiment. The
    9·1 answer
  • A rocket sled accelerates at 21.5 m/s^2 for 8.75 s. (a) What's its velocity at the end of that time? (b) How far has it traveled
    8·1 answer
  • A sinusoidally-varying voltage V(t)=V0sin(2pift) with amplitude V0 = 10 V and frequency f = 100 Hz is impressed across the plate
    7·1 answer
  • A 50 g tennis ball travels at a velocity of 15 m/s, hits a basketball with a mass of 600 g that is stationary on a frictionless
    9·1 answer
  • Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
    10·1 answer
  • In an experiment to illustrate the propagation of sound through fluids, identical sound sources emitting at 440 Hz are used to p
    13·1 answer
  • While playing basketball in PE class, Logan lost his balance after making a lay-up and colliding with the padded wall behind the
    11·1 answer
  • A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic f
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!