Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:

n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:

hence, the frequency of the third overtone is 102 Hz
Answer:
Pressure difference between Top and Bottom of the cylinder is given as

Explanation:
As we know that the force due to pressure is balanced by the weight of the cylinder
So we will have

so we have

so we have

so we have

Answer:
(C) 4 beats per second.
Explanation:
As we know that the no of beats can be calculated as.
No. of beats is equal to difference in the tuning forks frequencies.
So,
.
Substitute the values of frequencies of 2 tuning forks in the above equation.

Therefore the number of beats per second will be hear by the observer is 4 beats per second.
Answer:
Explanation:
For this problem we use the translational equilibrium condition. Our reference frame for block 1 is one axis parallel to the plane and the other perpendicular to the plane.
X axis
-Aₓ - f_e +T = 0 (1)
Y axis
N₁ - W_y = 0 ( 2)
let's use trigonometry for the weight components
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
We write the diagram for the second body.
Note that in the block the positive direction rd upwards, therefore for block 2 the positive direction must be downwards
W₂ -T = 0 (3)
we add the equations is 1 and 3
- W₁ sin θ - μ N₁ + W₂ = 0
from equation 2
N₁ = W₁ cos θ
we substitute
-W₁ sin θ - μ (W₁ cos θ) + W₂ = 0
W₂ = m₁ g (without ea - very expensive)
This is the smallest value that supports the equilibrium system
Answer:

Explanation:
Assuming uniform spread of sound with no significant reflections or absorption. We know that sound intensity varies
where r is the distance
Since intensity is given then when at 3 m


Since we have the constant then at 4m
Intensity, 