answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
2 years ago
9

In a house the temperature at the surface of a window is 28.9 °C. The temperature outside at the window surface is 7.89 °C. Heat

is lost through the window via conduction, and the heat lost per second has a certain value. The temperature outside begins to fall, while the conditions inside the house remain the same. As a result, the heat lost per second increases. What is the temperature in degrees Celsius at the outside window surface when the heat lost per second doubles?
Physics
1 answer:
Alenkasestr [34]2 years ago
3 0

Answer:

-13.18°C

Explanation:

To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.

Its definition is given by the function

\frac{Q}{t} = \frac{kA\Delta T}{d}

Where,

Q = The amount of heat transferred

t = time

k = Thermal conductivity constant

A = Cross-sectional area

\Delta T = The difference in temperature between one side of the material and the other

d= thickness of the material

The problem says that there is a loss of heat twice that of the initial state, that is

Q_2 = 2*Q_1

Replacing,

kA\frac{\Delta T_m}{x} = 2*kA\frac{\Delta T}{x}

\frac{\Delta T}{x}=2*\frac{\Delta T}{x}

\frac{T_i-T_o}{x} = 2\frac{T_1-T_2}{x}

\frac{28.9-T_o}{x} = 2\frac{28.9-7.86}{x}

Solvinf for T_o,

T_o = -13.18

Therefore the temprature at the outside windows furface when the heat lost per second doubles is  -13.18°C

You might be interested in
You need to design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a
Svetllana [295]

Answer:

Hello your question has some missing parts and the required diagram attached below is the missing part and the diagram

Digital circuits require actions to take place at precise times, so they are controlled by a clock that generates a steady sequence of rectangular voltage pulses. One of the most widely

used integrated circuits for creating clock pulses is called a 555 timer.  shows how the timer’s output pulses, oscillating between 0 V and 5 V, are controlled with two resistors and a capacitor. The circuit manufacturer tells users that TH, the time the clock output spends in the high (5V) state, is TH =(R1 + R2)*C*ln(2). Similarly, the time spent in the low (0 V) state is TL = R2*C*ln(2). Design a clock that will oscillate at 10 MHz and will spend 75% of each cycle in the high state. You will be using a 500 pF capacitor. What values do you need to specify for R1 and R2?

ANSWER : R1 = 144.3Ω,   R2 =  72.2 Ω

Explanation:

Frequency = 10 MHz

Time period = 1 / F =  0.1 <em>u </em>s

Duty cycle = 75% = 0.75

Duty cycle can be represented as :   Ton / T

Also: Ton = Th = 0.75 * 0.1 <em>u </em>s  = 75 <em>n</em> s

TL = T - Th = 100 <em>n</em>s - 75 <em>n</em> s = 25 <em>n</em> s

To find the value of R2 we use the equation for  time spent in the low (0 V) state

TL = R2*C*ln(2)

hence R2 = TL / ( C * In 2 )

c = 500 pF

Hence R2 = 25 / ( 500 pF * 0.693 )  = 72.2 Ω

To find the value of R1 we use the equation for the time the clock output spends in the high (5V) state,

Th = (R1 + R2)*C*ln(2)

  from the equation make R1 the subject of the formula

R1 =  (Th - ( R2 * C * In2 )) / (C * In 2)

R1 = ( 75 ns - ( 72.2 * 500 pF * 0.693)) / ( 500 pF * 0.693 )

R1 = ( 75 ns  - ( 25 ns ) / 500 pf * 0.693

     = 144.3Ω

8 0
1 year ago
if it takes 3.5 hours for the hogwarts express moving at a speed of 120 mi/hr to make it from platform 9 and 3/4 to hogwarts how
Mila [183]
Use the formula distance = rate * time. substitute in the values you know, which gives you distance = 120mph * 3.5hours. multiply 120 and 3.5 to get distance = 420 miles.
4 0
1 year ago
A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
matrenka [14]

Answer:

A)   F = - 8.5 10² N,  B)   I = 21 N s

Explanation:

A) We can solve this problem using the relationship of momentum and momentum

          I = Δp

in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction

         v₀ = 8.50 m / s

         v_f = -8.50 m / s

         F t = m v_f -m v₀

         F = m \frac{(v_f - v_o)}{t}

let's calculate

         F = 1.00 \ \frac{(-8.5-8.5)}{2 \ 10^{-2}}

         F = - 8.5 10² N

B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations

         v² = v₀² - 2g (y- y₀)

as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0

         v = \sqrt{2g y_o}

calculate  

         v = \sqrt{2 \ 9.8 \ 10}

         v = 14 m / s

to calculate the momentum we use

         I = Δp

         I = m v_f - mv₀

when it hits the ground its speed drops to zero

we substitute

         I = 1.50 (0-14)

         I = -21 N s

the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is

        I = 21 N s

4 0
1 year ago
Calculate the flux of the vector field F⃗ =−6i⃗ +5x2j⃗ −5k⃗ , through the square of side 8 in the plane y=1, centered on the y-a
Tasya [4]

Answer:

The flux is 682.6 Wb.

Explanation:

Given that,

Vector field F=-6i+5x^2j-5k

We need to calculate the flux

Using formula of flux

\phi=\int_{-4}^{4}\int_{-4}^{4}(F\cdot j\ dxdz)

Put the value into the formula

\phi=\int_{-4}^{4}\int_{-4}^{4}(-6i+5x^2j-5k)1\ dxdz

\phi=\int_{-4}^{4}\int_{-4}^{4}(5x^2)dxdz

\phi=2(\dfrac{x^3}{3})_{-4}^{4}\times(z)_{-4}^{4}

\phi=682.6\ Wb

Hence, The flux is 682.6 Wb.

7 0
2 years ago
A measuring microscope is used to examine the interference pattern. It is found that the average distance between the centers of
diamong [38]

Answer:

 2n t = m λ₀ ,    R = 0.240 mm

Explanation:

The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.

The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,

-This phase change is the introduction of a λ/2 change

-The ray passing through the film has a change in wavelength due to the refractive index of the medium

          λ₀ = λ / n

Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is

        2 t = (m’+ ½ + ½) λ₀ / n

        2t = (m’+1) λ₀ / n

         m = m’+ 1

        2n t = m λ₀

        With   m = 0, 1, 2, ...

Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength

The thickness of a hair is the thickness of the film t

           2R = t

             R = t / 2

             R = 0480/2

              R = 0.240 mm

3 0
1 year ago
Other questions:
  • A bird has a mass of 0.8 kg and flies at a speed of 11.2 m/s. How much kinetic energy does the bird have?
    5·2 answers
  • Divers found two substances on the bottom of the ocean. At room temperature, both substances are liquid. Scientists then transfe
    9·2 answers
  • A skier traveling 12.0 m/s reaches the foot of a steady upward 18.0º incline and glides 12.2 m up along this slope before coming
    13·1 answer
  • You are attending a county fair with your friend from your physics class. While walking around the fairgrounds, you discover a n
    12·1 answer
  • An electron is projected with an initial speed of 3.9 × 105 m/s directly toward a proton that is fixed in place. If the electron
    14·1 answer
  • Which of the following best describes a set of conditions under which archaeoastronomers would conclude that an ancient structur
    13·1 answer
  • An 80.0-kg man jumps from a height of 2.50 m onto a platform mounted on springs. As the springs compress, he pushes the platform
    10·1 answer
  • Suppose the coefficient of static friction between the road and the tires on a car is 0.683 and the car has no negative lift. Wh
    10·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
  • A 3400 kg jet is flying at a constant speed of 170 m/s as it makes a vertical loop. At the top of the loop the pilot feels three
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!