The magnitude of the component of the box’s weight
perpendicular to the incline can be olve using the formula:
F = wcos(a)
Where F is the box’s weight perpendicular to the incline
W is the weight of the box
A is the angle of the incline
F = (46)cos(25)
F = 42 N
<span>Short-range forecasts are more accurate than longer range ones. Short term forecasts may use mathematical techniques such as moving averages and, exponential smoothing. Longer term forecasts not only use different methodologies, such as qualitative vs. quantitative, they also tend to consider different issues.</span>
Transverse waves travel on a direction that is perpendicular to the motion of the particles (or whatever medium is waving) So the particles must be moving east to west, which is transverse to the north-south motion of the wave
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>