Answer:
red has a longer wavelength than yellow. Yellow has a longer wavelength than green.
Explanation
in the visible spectrum a color with high frequency contains shorter wavelength.In this case red color has high wavelength followed by yellow followed by green,blue and violet.
Answer:
Explanation:
The formula for gravitational potential energy is
Ep = m · g · h Assuming that the acceleration is g = 10m/s²
Ep = 45.4 · 10 · 21.9 = 9,942.6 J
God is with you!!!
Answer:
To calculate anything - speed, acceleration, all that - we need <em>data</em>. The more data we have, and the more accurate that data is, the more accurate our calculations will be. To collect that data, we need to <em>measure </em>it somehow. To measure anything, we need tools and a method. Speed is a measure of distance over time, so we'll need tools for measuring <em>time </em>and <em>distance</em>, and a method for measuring each.
Conveniently, the lamp posts in this problem are equally spaced, and we can treat that spacing as our measuring stick. To measure speed, we'll need to bring time in somehow too, and that's where the stopwatch comes in. A good method might go like this:
- Press start on the stopwatch right as you pass a lamp post
- Each time you pass another lamp post, press the lap button on the stopwatch
- Press stop after however many lamp posts you'd like, making sure to hit stop right as you pass the last lamp post
- Record your data
- Calculate the time intervals for passing each lamp post using the lap data
- Calculate the average of all those invervals and divide by 40 m - this will give you an approximate average speed
Of course, you'll never find an *exact* amount, but the more data points you have, the better your approximation will become.
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
Answer:
v₂ = v/1.5= 0.667 v
Explanation:
For this exercise we will use the conservation of the moment, for this we will define a system formed by the two students and the cars, for this isolated system the forces during the contact are internal, therefore the moment conserves.
Initial moment before pushing
p₀ = 0
Final moment after they have been pushed
= m₁ v₁ + m₂ v₂
p₀ = 
0 = m₁ v₁ + m₂ v₂
m₁ v₁ = - m₂ v₂
Let's replace
M (-v) = -1.5M v₂
v₂ = v / 1.5
v₂ = 0.667 v