Answer:
d = Δv(t2-t1)
Explanation:
Speed is defined as the change of displacement with respect to time. It is expressed as shown;
Speed = change in displacement/change in time
Δv = d/Δt
d = Δv*Δt
d = ΔvΔt
Δt = t2-t1
d = Δv(t2-t1)
Δv is the change in rate of speed
Δt = change in time
The correct expression for the displacement of the car during this motion is d = Δv(t2-t1)
Answer:
The higher the altitude the colder
Explanation:
Mountains are very high up obviously higher then the ground. It is colder so it makes it easier for mountain climbers to get frost bite because of the high altitude.
Hope this helps:)
Answer: The released electromagnetic wave will travel in +y direction
Explanation:
It should be noted that, in a situation, whereby an excited hydrogen atom releases an electromagnetic wave to return to its normal state. And it's also evident that the futuristic dual electric/magnetic field tester on the electromagnetic wave to find the directions of the electric field and magnetic field is used. Eventually, your device tells you that the electric field is pointing in the positive y direction and the magnetic field is pointing in the positive x direction. Therefore, the released electromagnetic wave will travel in +y direction.
Answer:
13.54 N/m
0.6 m
4.37 m/s
32.496 m/s²
Explanation:
m = Mass of block = 0.25 kg
k = Spring constant
A = Amplitude
x = Compression of spring = 0.24 m
a = Acceleration = -13 m/s²
v = Velocity = 4 m/s
The weight of the block and force on spring is equal

The spring's force constant is 13.54 N/m
Total energy of the system is given by

At maximum displacement v = 0


The amplitude of the motion is 0.6 m
Speed of the block

The maximum speed of the block during its motion is 4.37 m/s
Forces in the spring

Maximum magnitude of the block's acceleration during its motion is 32.496 m/s²
Answer:
The y-component of the car's position vector is 670m/s.
The x-component of the acceleration vector is -3, and the y-component is 40.
Explanation:
The displacement vector of the car with velocity

is the integral of the velocity.
Integrating
we get the displacement vector
:

Now if the initial position if the car is

then the displacement of the car at time
is


Now at
, we have

The y-component of the car's position vector is 670m/s.
The acceleration vector is the derivative of the velocity vector:

and at
it is

The x-component of the acceleration vector is -3, and the y-component is 40.