Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
Answer:

Explanation:
Since volume of all the liquid is always conserved
so here we know that




now we know that total surface area is given as



Answer:reactant,active site,enzyme below,substrate,products
Explanation:
When I see this equation, I can properly make the answer come out to 7.8 percent. I do this, by taking the 80 women, and dividing 80 women by the 80 women plus the 950 women, so 80/80+950 (or 80/1030=.078). So I get 7.8%, which should be the right answer.
But when I try to do the same with percentages, it all gets sort of screwy. I take the 80 percent of women (.8) divided by that same 80 percent (.8) plus 9.5 percent of women without cancer who test postive for it (.095). So I get .8/.8+.095=89%.