Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
8 cm
Ladder is safer than to walk on it
Explanation:
Streched = Final length - initial length
= 66 - 58
= 8 cm
When your are walking along frozen ice pond your weight is not distributed .It's acting on directly on the ice pond because of contact Area is too small between pond and you. There for According to pressure equation ,
P = F/A
When area is less pressure is less.
If use ladder instead of going by foot. Contact area will be high between pond and ladder. There for pressure is reduced .
Answer:
Explanation:
Given that,
Spring constant = 16N/m
Extension of spring
x = 8cm = 0.08m
Mass
m = 5g =5/1000 = 0.005 kg
The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.
So, Using conservation of energy
Energy in spring is converted to kinectic energy
So, Ux = K.E
Ux = ½ kx²
Then,
Ux = ½ × 16 × 0.08m²
Ux = 0.64 J
Since, K.E = Ux
K.E = 0.64 J