Answer: 140 m
Explanation:
Let's begin by stating clear that motiont is the change of position of a body at a certain time. So, during this motion, the balloon will have a trajectory and a displacement, being both different:
The<u> trajectory</u> is <u>the path followed by the body, the distance it travelled</u> (is a scalar quantity).
The displacement is <u>the distance in a straight line between the initial and final position</u> (is a vector quantity).
So, according to this, the distance the balloon traveled during the first 45 s (its trajectory) is 140 m.
But, if we talk about displacement, we have to draw a straight line between the initial position of the balloon (point 0) to its final position (point 90 m). Being its displacement 95 m.
Explanation:
When Michelson-Morley apparatus is turned through
then position of two mirrors will be changed. The resultant path difference will be as follows.

Formula for change in fringe shift is as follows.
n = 

v = 
According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.
l = 11 m
c =
m/s
Hence, putting the given values into the above formula as follows.
v = 
= 
= 
Thus, we can conclude that velocity deduced is
.
Answer:
It will take 4 sec rock to comes its original point
Explanation:
It is given that the rock comes to its original point
So displacement S = 0 m
Initial velocity u = 19.6 m/sec
Acceleration due to gravity 
According to second equation of motion 


t = 4 sec
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
Answer:
F = 0.535 N
Explanation:
Let's use the concepts of energy, at the highest and lowest point of the trajectory
Higher
Em₀ = U = mg y
Lower
= K = ½ m v²
Emo =
mg y = ½ m v2
v = √ 2gy
y = L - L cos θ
v = √ (2g L (1-cos θ))
Now let's use Newton's second law n at the lowest point where the acceleration is centripetal
F = ma
a = v² / r
In turning radius is the cable length r = L
F = m 2g (1-cos θ)
Let's calculate
F = 2 1.25 9.8 (1 - cos 12)
F = 0.535 N