Answer:
2.06 m³/s
Explanation:
diameter of pipe, d = 0.81 m
diameter of constriction, d' = 0.486 m
radius, r = 0.405 m
r' = 0.243 m
density of oil, ρ = 821 kg/m³
Pressure in the pipe, P = 7970 N/m²
Pressure at the constriction, P' = 5977.5 N/m²
Let v and v' is the velocity of fluid in the pipe and at the constriction.
By use of the equation of continuity
A x v = A' x v'
r² x v = r'² x v'
0.405 x 0.405 x v = 0.243 x 0.243 x v'
v = 0.36 v' .... (1)
Use of Bernoulli's theorem

7970 + 0.5 x 821 x 0.36 x 0.36 x v'² = 5977.5 + 0.5 x 821 x v'² from (i)
1992.5 = 357.3 v'²
v' = 5.58 m/s
v = 0.36 x 5.58
v = 2 m/s
Rate of flow = A x v = 3.14 x 0.405 x 0.405 x 2 x 2 = 2.06 m³/s
Thus the rate of flow of volume is 2.06 m³/s.
By wave particle duality.
Wavelength , λ = h / mv
where h = Planck's constant = 6.63 * 10⁻³⁴ Js, m = mass in kg, v = velocity in m/s.
m = 1kg, v = 4.5 m/s
λ = h / mv
λ = (6.63 * 10⁻³⁴) /(1*4.5)
λ ≈ 1.473 * 10⁻³⁴ m
Option D.
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
Answer:
The gas was Hexane
Explanation:
taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

From the ideal gases law we have that the density can be calculated as:

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:


Note that the temperature is computed in Kelvin T= 18+273=291K
The gas with the closer molar mass is Hexane